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Abstract. In this work, we propose to use 3D facial landmarks for the
task of subject identification, over a range of expressed emotion. Land-
marks are detected, using a Temporal Deformable Shape Model and used
to train a Support Vector Machine (SVM), Random Forest (RF), and
Long Short-term Memory (LSTM) neural network for subject identifica-
tion. As we are interested in subject identification with large variations
in expression, we conducted experiments on 3 emotion-based databases,
namely the BU-4DFE, BP4D, and BP4D+ 3D/4D face databases. We
show that our proposed method outperforms current state of the art
methods for subject identification on BU-4DFE and BP4D. To the best
of our knowledge, this is the first work to investigate subject identifica-
tion on the BP4D+, resulting in a baseline for the community.

1 Introduction

Broadly, face recognition can be categorized as holistic, hybrid matching, or
feature-based [38]. Holistic approaches look at the global similarity of the face
such as a 3D morphable model (3DMM) [2]; hybrid matching make use of either
multiple methods [14] or multiple modalities [17]; feature-based methods look
at local features of the face to find similarities [40]. The work proposed in this
paper can be categorized as feature-based. Due to its non-intrusive nature and
wide applicability in security and defense related fields, face recognition has been
actively researched by many groups in recent decades.

Since some of the earlier methods for face recognition [31], [37], to more
recent works within the past 10 years [7], [35] 2D face recognition has been an
actively researched field. With the recent advances in deep neural networks, we
have seen significant jumps in performance [12], [18], [22], [24], [28], [33]. Liu et
al. [21] proposed the angular softmax that allows convolutional neural networks
(CNN) the ability to learn angularly discriminative features. This was proposed
to handle the problem where face features are shown to have a smaller intra-class
distance compared to inter-class distance. Recently, Tuan et al. [30] proposed
regressing 3D morphable model shape and texture parameters from a 2D image
using a CNN. Using this approach, they were able to obtain a sufficient amount
of training data for their network showing promising results. Zhu et al. [41]
proposed a high-fidelity pose and expression normalization method that made
use of a 3DMM to generate natural, frontal facing, neutral face images. Using this
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Fig. 1. Overview of proposed method. Example is showing an unseen 3D mesh model
of subject ‘F001’ from BP4D+ [39], who is correctly identified based on training a
LSTM [13] from 3D facial data detected from a TDSM.

method, they achieved promising results in both constrained and unconstrained
environments (i.e. wild settings). Although performance has been increasing and
groups have been actively working on 2D subject identification, there are still
some challenges such as pose and lighting. 3D faces can help to minimize these
challenges [25], and in recent years, this research has made significant strides
[11], [12], [26] due to the development of powerful, high-fidelity 3D sensors.

Echeagaray-Patron et al. [11] proposed a method for 3D face recognition
where conformal mapping is used to map the original face surfaces onto a Rie-
mannian manifold. From the conformal and isometric invariants that they com-
pute, comparisons are then made. This method was shown to have invariance
to both expression and pose. Lei et al. [20] proposed the Angular Radial Sig-
nature for 3D face recognition. This signature is extracted from the semi-rigid
regions of the face, followed by mid-level features being extracted from the sig-
nature by Kernel Principal Component Analysis. These features were then used
to train a support vector machine showing promising results when comparing
neutral vs. non-neutral faces. Berretti et al. [1] proposed the use of 3D Weighted
Walkthroughs with iso-geodesic facial strips for the task of 3D face recognition.
They achieved promising results on the FRGC v2.0 [23] and SHREC08 [10] 3D
facial datasets. Using multistage hybrid alignment algorithms and an annotated
face model, Kakadiaris et al. [15] used a deformable model framework to show
robustness to facial expressions when performing 3D face recognition.

Motivated by the above works, we propose to use 3D facial landmarks for
subject identification across large variations in expression. We track the facial
landmarks using a Temporal Deformable Shape Model (TDSM) [6]. See Fig. 1
for an overview of the proposed approach. The rest of the paper is organized
as follows. Section 2 gives a brief overview of the TDSM algorithm, Section 3
details our experimental design and results, and we conclude in Section 4.
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2 Temporal Deformable Shape Model

The Temporal Deformable Shape Model (TDSM) models the shape variation of
3D facial data. Given a sequence of data (i.e. 4D), it also models the implicit
constraints on shape that are imposed (e.g. small changes in motion and shape).
To construct a TDSM, a training set of 3D facial landmarks is required. First,
the 3D facial landmarks are aligned using a modified version of Procrustes anal-
ysis [5]. Given a training set of size L 3D faces, where each face has N facial
landmarks (aligned with Procrustes analysis), a parameterized model S is con-
structed, S = F 1
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model, principal component analysis (PCA), is then applied to learn the modes
of variation, V, of the training data.

Given the parameterized model, S, and the modes of variation, V, to detect
3D facial landmarks, an offline weight vector, w, is constructed that allows for
new face shapes to be constructed, by a linear combination of landmarks as
S = s̄ + V w where s̄ is the average face shape. These constructed face shapes
are constrained to be within the range −2

√
λi ≤ wi ≤ 2

√
λi, where wi is the ith

weight in the range, and λi is the ith eigenvalue from PCA. This constraint is
imposed to make sure the new face shape is a 3D face.

To fit (i.e. detect landmarks) to a new input mesh, an offline table of weights
(w) is constructed with a uniform amount of variance. The Procrustes distance,
D, is then computed between each face shape (referred to as an instance of the
TDSM) and the new input mesh. The smallest distance is considered the best
detected landmarks. Note that this is not meant to be an exhaustive overview of
a TDSM, therefore we refer the reader to the original work [6] for more details.

3 Experimental Design and Results

Using a TDSM, we detected 83 facial landmarks on 3 publicly available 3D
emotion-based face databases: BU4DFE [34], BP4D [36], and BP4D+ [39]. From
these facial landmarks, we then conducted subject identification experiments,
where the landmarks are used as training data for 3 machine learning classifiers.
Using these 83 facial landmarks we have also reduced the dimensionality of the
3D faces from over 30,000 3D vertices, while still retaining important features for
subject identification. This allows us to reduce storage requirements, as well as
processing time of the 3D face, which can be limitations of 3D face recognition
[3], [16]. An overview of the databases and the experimental design is detailed
in the following subsections.

3.1 3D face databases

One of the main goals of this work is to show subject identification across large
variations in expression. Considering this, we evaluated 3 large, state-of-the-art
3D emotion-based face databases with a total of 282 subjects across all 3.



4 SK R. Jannat et al.

BU-4DFE [34]: Consists of 101 subjects displaying 6 prototypical facial
expressions plus neutral. The dataset has 58 females and 43 males, including a
variety of racial ancestries. The age range of the BU-4DFE is 18-45 years of age.

BP4D [36]: Consists of 41 subjects displaying 8 expressions plus neutral. It
consists of 23 females and 18 males; 11 Asian, 4 Hispanic, 6 African-American,
and 20 Euro-American ethnicities are represented. The age range of the BP4D
is 18-29 years of age. This database was developed to explore spatiotemporal
features in facial expressions. Due to its large variation in expression, it is a
natural fit for our subject identification study.

BP4D+ [39]: Consists of 140 subjects (82 females and 58 males) ages
18-66. This data corpus consists of ethnic and racial ancestries that include
African American, Caucasian, and Asian each with highly varied emotions. These
emotions are elicited through tasks designed to elicit dynamic emotions in the
subjects such as disgust, sadness, pain, and surprise resulting in a challenging
dataset. Like the BP4D database, this dataset was also designed to study emo-
tion classification. Its diversity and number of subjects, as well as large variations
in expressions, make it a natural fit for our study.

3.2 Experimental design

To conduct our experiments, we detected 83 facial landmarks on the 3D data
using a TDSM. Given 3D facial landmarks, we then translated them so that the
centroid of the face is located at the origin in 3D space to align the data. The
translated 3D facial features were then used for subject identification. Each of
the 3D facial landmarks (x, y, z coordinates) are inserted into a new feature
vector. For all 83 landmarks, this gives us a feature vector of size 83× 3 = 249.
This feature vector is used to train classifiers for subject identification. To en-
sure our results were not classifier specific, we trained a support vector machine
(SVM) [32], random forest (RF) [4], and Long short-term memory (LSTM) neu-
ral network [13]. Our network consists of one short-term memory layer with a
look back of two faces (estimated landmarks), followed by 0.5 dropout, and a
fully connected layer for classification. The softmax activation function was used,
along with the RMSprop [29] optimizer with a learning rate of 0.0001.

For each classifier, each subject’s identity was used as the class (each 3D face
is labeled with a subject id). Accurate results on an SVM, RF, and LSTM show
the robustness of the 3D facial landmarks to multiple machine learning classifiers.
We conducted one-to-many subjection identification, where all subjects were in
both the training and testing sets. These sets were split based on time (i.e.
different sections of the sequences available in the datasets) so consecutive (i.e.,
similar) frames did not appear in both sets.

3.3 Subject identification results

We achieved an average subject identification accuracy of 99.9%, on random for-
est and support vector machine, and 99.93% for an LSTM, across all databases.
As can be seen in Table 1, an SVM, RF, and LSTM can accurately identify
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Table 1. Subject identification accuracies for the 3 tested datasets and classifiers.

BU4DFE BP4D BP4D+

SVM 99.9% 99.9% 99.9%

RF 100% 99.9% 99.8%

LSTM 100% 99.9% 99.9%

Table 2. Subject identification accuracies(percentage) for faces with simulated occlu-
sion. Key: TR: Top Right; TL: Top Left; LR: Lower Right; LL: Lower Left.

BP4D BP4D+

TR TL LR LL TR TL LR LL

RF 99.7 99.7 99.7 99.7 99.3 99.3 99.6 99.5

SVM 95.1 96.8 93.4 87.5 98.8 99.1 97.5 94.8

subjects from the BU4DFE, BP4D, and BP4D+ datasets achieving a max accu-
racy of 100% on BU4DFE, and a minimum accuracy of 99.8% on BP4D+. All
three of the tested classifiers achieved consistent results across all three datasets,
showing these results are not classifier dependent. As each of the datasets con-
tain large variations in expression, these results show the detected 3D landmarks
have robustness to expression changes for the task of subject identification.

3.4 Subject identification with occluded faces

Along with subject identification using all 83 landmarks, we also tested on a
smaller number of facial landmarks to simulate occluded faces. For these exper-
iments, we split the 3D facial landmarks (i.e. face) into 4 quadrants (Fig. 2) and
detected a smaller number of landmarks (top right: 23; top left:23; lower right:
20; lower left: 17) using a TDSM. We then ran the same experiments for each
quadrant. As shown in Section 3, the results are not classifier specific, as the
random forest, SVM, and LSTM network have similar results. Due to this we
only used a random forest and support vector machine for these experiments.

When testing on simulated occluded faces on BU4DFE, both the random for-
est and SVM achieved 99.9% accuracy in all four quadrants, showing robustness
to occlusion. Testing on BP4D, the random forest achieved an average accuracy
of 99.7% across the four quadrants, and SVM achieved an average accuracy of
93.2% across the four quadrants. On BP4D+, random forest and SVM achieved
an average accuracy of 99.4% and 97.5%, respectively across the four quadrants.
These results detail the expressive power of the detected 3D facial landmarks to
reliably identify subjects under extreme conditions. See Table 2 for individual
quadrant accuracies for BP4D and BP4D+ (BU4DFE not shown as all quadrants
had same accuracy of 99.9% for both classifiers).

3.5 Comparisons to state of the art

We compared our proposed method to the current state of the art on BU-4DFE
[34] and BP4D [36] (see Table 3 for both). To the best of our knowledge this
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Fig. 2. Detected landmarks (BP4D [36]) used for subject ID (original 3D mesh shown
only for display purposes). (a) 83 landmarks with texture (note: texture is shown for
display purposes only showing robustness to facial hair); (b) 83 landmarks; (c) top left
quadrant; (d) top right quadrant; (e) lower left quadrant; and (f) lower right quadrant.

Table 3. State-of-the-art comparisons.

Method BU4DFE BP4D

Proposed Method (RF) 100% 99.9%

Proposed Method (LSTM) 100% 99.9%

Proposed Method (SVM) 99.9% 99.9%

Sun et al. [27] 98.61% N/A

Fernandes et al. [19] 96.71% N/A

Canavan et al. [8] 92.7% 93.4%

is the first study to perform subject identification on BP4D+ [39]; therefore,
we did not have any works to compare against resulting in a baseline for the
community. In these comparisons, it is important to note that Canavan et al
[8] used 1800 and 2400 frames from BU-4DFE and BP4D, respectively, for their
experiments. We used all data in both datasets (60402 and 367474 respectively).
The work from Sun et al. [27] also requires both spatial and temporal informa-
tion to achieve their results of 98.61%, and while our approach can incorporate
temporal information (e.g. LSTM), it can also identify a subject based on one
frame of data, which is useful when temporal information is not available.

4 Conclusion

We have shown 3D facial landmarks can be used for subject identification across
large variations in expression. We validated our approach on three 3D emotion-
based face databases (BU4DFE [34], BP4D [36], and BP4D+ [39]), using a ran-
dom forest, support vector machine, and long short-term neural network. The
proposed method outperforms current state of the art on 2 publicly available 3D
face databases achieving a max identification accuracy of 100% on BU-4DFE and
99.9% on BP4D. To the best of our knowledge, this is the first work to report
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subject identification results on the BP4D+. We have also shown the detected
landmarks can be used for subject identification in the presence of facial occlu-
sion (simulated). We will further investigate this robustness to expression and
occlusion in future work, by investigating other state-of-the-art 3D face emotion
datasets such as 4DFab [9], which was also designed with biometrics studies in
mind, as well as large variations in expression.

We are also interested in emotion-invariant multimodal subject identification.
In this paper, we have shown that 3D landmarks are invariant to large expression
changes for the task of subject identification. Since facial expressions are often
physiological responses to emotion, emotion-invariant identification can have a
broad range of applications such as medicine and healthcare (e.g., identifying
individuals despite expressions of pain). Multimodal approaches are generally
more accurate due to the fusion of heterogeneous data, each contributing iden-
tifying information. Considering this, we hypothesize a multimodal approach
will significantly advance research on emotion-invariant subject identification
while yielding new insight on the impact of emotion on novel modalities such
as smartphone sensor data (e.g., accelerometer and touch measurements) and
other unconstrained and transparently acquired data. Such approaches will be
valuable for continuous subject identification.
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