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Abstract—In this paper, we propose a new representation of
human emotion through the fusion of physiological signals. Using
the variance of these signals, the proposed method increases the
effect of signals that contribute to the recognition accuracy, while
decreasing the effect of those that do not. The new representation
is a powerful approach to recognizing emotions. We investigate
this by comparing against emotion recognition results from non-
fused physiological signals. Both the fused and non-fused signals
are used to train feedforward neural networks to recognize a
range of emotion. We show that the fused method outperforms
each individual signal across all emotions tested. We test the
efficacy of the proposed approach on two publicly available
datasets, namely BP4D+ and DEAP, showing state-of-the-art
results on both. To the best of our knowledge this is the first
work to present emotion recognition results using physiological
signals on all subjects from BP4D+.

Index Terms—fusion, physiological, affect, emotion recognition

I. INTRODUCTION

Affective Computing has been an exciting and growing field
in the past two decades, due largely in part to the seminal work
from Rosalind Picard [21]. The field has important applications
in artificial intelligence, as being able to recognize emotion is
an important part of human intelligence [24]. The ability to
recognize emotion has broad impacts for real-world applica-
tions in fields as diverse as medicine, defense, entertainment,
and retail. Some of these applications include pain recognition
[41], customer feedback [4], and educational video games [16].
To move forward with developing these applications, we need
to understand the foundation of autonomy, as well as advance
interfaces between human and machines. To do this, we must
first understand the role of emotion, including what exactly
emotion is. This is a difficult problem as there are currently
around 100 definitions of what emotion is [22].

In the past two decades, there has been lasting and notable
work in analyzing emotions. Most notably these works have
focused on using 2D [1], [37], [38] and 3D faces [7], [9],
[17], thermal data [23], [32] and audio signals [10], [42] for
this task. Along with these modalities, physiological data is
another interesting modality. Lisettit and Nasoz [19] showed
they could recognize emotions using the min, max, mean,
and variance of physiological signals. Motivated by this, we
propose a method for fusing physiological signals for emotion
recognition. We hypothesize that the fusion of high variance
signals will increase the performance of emotion recognition.
Considering this, the proposed method increases the effect of
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high variance signals and decreases the effect of low variance
signals (Fig. 1).

In contrast to previous methods, that have used physiolog-
ical data for emotion recognition [14], [18], [20], [28], we
fuse multiple signals into a new representation of emotion for
each subject. As we will show, this new representation can
be used to increase the overall emotion recognition accuracy
when using physiological signals. As wearable devices become
more and more commonplace, the proposed research has the
potential to extend some of the broad, real-world applications
to include real-time lie detection, analysis of stress levels, and
prediction of autism in children. The main contributions of the
proposed research can be summarized as follows:

1) We propose a method for fusing physiological signals
that can be used for emotion recognition.

2) We validate the utility of the proposed approach by
comparing against non-fused physiological signals for
emotion recognition.

3) We detail an application of the proposed fusion method
for pain recognition.

4) We show the superior performance, of the proposed
method, compared to the state of the art on DEAP [14]
and BP4D+ [44].

II. RELATED WORKS

In recent years, there has been interesting and exciting
work done using physiological signals for emotion recognition.
Koelstra et al. [14] developed a heterogeneous dataset of EEG
and peripheral physiological signals, as well as subject self-
rating. Using this data, they classified arousal and valence, and
like and dislike ratings (based on self-rating). Rozgic et al.
[29], proposed a method for emotion classification using EEG
signals where they extract features from overlapping sequences
of the signals from the DEAP dataset. Learning features
from a deep belief network, Li et al. [18] extracted high-
level EEG features for classification with an SVM. Wagner
et al. [34] collected physiological data using four-channel
biosensors. Emotion was elicited using a music induction
method. They extracted hand-crafted features from the sig-
nals including breathing rate and amplitude of the signals.
They found that it is easier to distinguish between emotion
along the arousal axes compared to the valence axes. They
experimented with multiple classifiers including multilayer
perceptron and k-nearest neighbor. Yin et al. [40] trained an
ensemble deep learning model with physiological signals for
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Fig. 1. Overview of proposed method. Fusion of 8 physiological pain signals (BP4D+ [44]) correctly recognized as pain..

emotion recognition. Using a stacked autoencoder approach,
they derive stable feature representations. A separate deep
model is then used for the stacked autoencoder ensemble. They
found that this ensemble-based approach can lead to higher
generalization capability compared to other shallow methods.
Using a music-based method, Kim et al. [13], investigated
changes in physiological signals for the task of emotion
recognition. They collected data over multiple weeks to extract
features from domains that include time, geometric, and the
sub-band spectra. These features were used to classify four
musical emotions along the arousal axes using an extended
linear discriminant analysis.

Over the last decade, there has been a great deal of
interesting work also done in the medical field using phys-
iological signals, especially with deep learning methods [8].
Yang et al. [39], used a recurrent neural network to detect
anomalies in heart sounds from acoustic physiological signals.
They proposed a method to augment the signals by using
Discrete Fourier Transform, where they include the variance
from the window with the acoustic signals. Tan et al. [31],
detected seizures using EEG signals. They developed a 13-
layer Convolutional Neural Network (CNN) that was able to
detect normal, preictal, and seizure classes with 88.67%, 90%,
and 95% accuracy, respectively. They also used electrocar-
diography (ECG) signals to identify coronary artery disease
by training a stacked CNN and Long Short-term Memory
(LSTM) network. Using the proposed approach, they achieved
a diagnosis accuracy of 99.85% from 47 subjects (7 with CAD,
40 normal).

Ragot et al. [27] investigated emotion recognition accuracies
of lab sensors (Biopac MP150), vs. wearable sensors (Empat-
ica E4). Their investigation showed similar accuracies between
the two devices, showing emotion recognition is feasible in
a real-world setting. Chen et al. [5] proposed a wearable
healthcare system that collected physiological data and sent
it to a cloud-based architecture to analyze the users health,
along with their emotional state. This system was designed to
help with emotional care deficiency (e.g. seniors quality of life,
and empty nest syndrome [30]). Another study using cloud-

based technology along with wearable devices was conducted
by Zhang et al [43]. They proposed using the cloud to create a
system for patient-centric healthcare. Using a robotics-assisted
interface, they collected user data such as temperature and
heart rate, to identify health risks, which in turn can be used
to create a personalized health plan.

Zamzmi et al. [41], developed a multimodal approach to
predict pain in infants. This approach used facial expressions,
body movements, and physiological signals that include heart
rate, respiration rate, and oxygen saturation levels. In their
approach they extracted the mean value of each of these
to train multiple classifiers such as KNN, SVM, and ran-
dom forests. Using leave-one-subject-out cross validation, they
achieved a max classification accuracy of 96%, when using the
physiological signals to predict Neonatal Infant Paint Scores.
They also predicted three states of pain (no pain, moderate
pain, severe pain), achieving 82% accuracy.

Motivated by these works, the proposed approach is com-
plimentary to both general emotion recognition, as well as the
medical field as we detail results on pain recognition, as well
as the prototypical emotions (e.g. sad, happy).

III. FUSION OF PHYSIOLOGICAL SIGNALS

We propose a new method to fuse physiological signals
into a new signal that retains relevant temporal information.
Given different physiological signals, some of them will have
a different frame count, due to difference in data capture (e.g.
data from BP4D+ [44]). Considering this, given signals of
varying lengths, we first down-sample the signals to the same
unit of time (i.e. same number of frames). This allows us to
make direct comparisons between each of the signals. To do
this, we first compute the ratio of the raw signal compared to
the number of frames of data that we want to keep as (ratio =
original_raw_frame_count/new_frame_count). We then
create a new frame by averaging ratio number of continuous
frames resulting in exactly new_ frame_count frames of data.
In doing this, we effectively down-sample all signals to have
the same sampling rate (Fig. 2).



Fig. 2. Left side: original diastolic BP from BP4D+; right side: down-sampled diastolic BP. The original signal (left) has over 50,000 frames of data, while
the resampled signal (right) has 5,000 frames of data, however, it still retains the original shape.

Given the down-sampled, raw signals, we then fuse each
of them to create a new signal that retains the important
emotion-based information from each of the fused signals.
Our technique takes each of the signals, from each subject,
for each emotion and fuses them (e.g. given a subject, each
physiological signal with a Happy emotion is fused to create
a new signal that represents Happy for that subject). When
fusing the signals, we want to retain information that will
result in higher emotion recognition accuracy. To investigate
this, we first computed the variance, across all subjects, of each
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to note that we have experimente(? with different statistical
measures (e.g. entropy), and found no statistically significant
difference in the resulting fused signals. We then compared
this to the accuracy of each individual signal (non-fused) for
emotion recognition (experimental design is detailed in section
IV). In doing this, we found a trend that higher variance
signals generally correspond to a higher accuracy in emotion
recognition (Fig. 3).

Motivated by this trend, we use the variance to weight each
signal during fusion. Given the variance for each signal type,
we then normalize these values be in the range [min, max],
which are the final variance values used to weight each signals
importance. Each signal frame is multiplied by the weight, and
then each signal is summed together as:

physiological signal as S? = . It is important

N
fusedsignal = Z(”Sf x FS;). (D
i=1
Where ns? is the normalized variance (i.e. weight), F'S; is
the frame of the current signal being fused, and N is the total
number of frames to be fused. This weighted fusion effectively
boosts the high variance signals while dampening the low
variance signals (Figs. 4 and 5). It should also be noted that
the proposed fusion method will accurately follow and boost
the directional trends of the original non-fused signals. For
example, the overall trend of pain overtime (from BP4D+ data)
is an increase in the signal. This is intuitive as the task to elicit
pain in BP4D+ was for the subject to hold their hand in ice.
The longer this task occurs, the more likely the subject is to
be in pain. The fused signal takes the general trend of the
original signals and boosts it (Figs. 4 and 5).
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Fig. 3. Emotion recognition accuracy vs. variance of individual signals from
BP4D+ [47]. Blue dotted line represents general trend.

IV. EXPERIMENTAL DESIGN AND RESULTS

A. Datasets

For our experiments, we used 2 state-of-the-art emotion-
based datasets, namely BP4D+ [44], and DEAP [14]. Details
on each of these is given below.

BP4D+ Dataset. BPAD+ is a large-scale, multimodal emo-
tion dataset. It was used in the FERA challenge 2017 [33]. It
consists of 140 subjects split between 58 male and 82 female
subjects with ages ranging from 18-66. There is a total of
8 physiological signals that include blood pressure (diastolic,
systolic, mean, and raw), respiration (rate and volts), heart
rate, and electrodermal (EDA). Each subject contains data
from 10 target emotions: happiness, sadness, anger, disgust,
embarrassment, startled, skeptical, fear, pain, and surprise. The
physiological signals from this dataset vary in length, therefore
it is necessary for us to down-sample the data (Fig. 2). For
our experiments, we fuse all physiological types (8 total), with
weights of [0,1] (normalized variance as shown in Equation
1). In using these min and max weights, the signal with the
lowest variance is removed, due to a weight of 0 (Fig. 4). We
have empirically found that these weights work well for this
data.

DEAP Dataset. DEAP is another multimodal emotion
dataset. It contains 32 channels of electroencephalogram
(EEG) signals based on the 10-20 system [11], as well as
8 physiological signals from 32 subjects (Fig. 5). The physi-
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Fig. 4. Left side: Physiological signals, from a subject, for each of the 10 emotions in BP4D+ [44]. Right side: Fused signals from raw signals on left.
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Fig. 5. Left: 32 EEG channels (subject in DEAP [14]); right: fused signal.

ological signals include horizontal Electrooculogram (hEOG),
vertical Electrooculogram (VEOG), Zygomaticus Major Elec-
tromyogram (zEMG), Trapezius Electromyogram (tEMG),
galvanic skin response (GSR), respiration, plethysmograph,
and temperature. Along with the physiological signals, the
dataset set also contains frontal face videos for 22 of the
subjects. Each subject watched 40 one-minute music videos,
which were selected using the affective tags that appeared on
the last.fm website. For each of the videos, the subjects rated
arousal, valence, like/dislike, and dominance/familiarity on a
scale from [1-9]. Each of the signals consist of 8064 frames
of data, therefore resampling is not needed for the signals in

DEAP. For our experiments we only focus on fusing the raw
EEG signals, in this paper.

B. Feedforward Neural Network

We are motivated by the work from Han et al. [10],
where they successfully used feedforward neural networks for
emotion recognition from speech. Considering this, we used
one for our experiments. The network is composed of an
initial input layer that has the same number of neurons as the
input vector, one hidden layer where the number of neurons
= |(number of neurons in input layer + number of neurons in
output layer)/2], and the final output layer output layer where
the number of neurons = the number of classes to predict.
The softmax activation function was used, and the adamax
optimizer [12] with a learning rate of 0.001.

C. Results on BP4D+

To conduct our experiments on the BP4D+, we used 10-
fold cross validation on both the fused signals, and individual
signals (e.g. EDA). We randomly created 10-folds where 90%
of the data was used for training, and 10% was used for testing.
Each fold was used for testing, with it being independent from
the training data. The average accuracy across each fold is
reported. Along with our experiments on the fused signals,
we conducted two experiments on the individual signals to
test the validity of fusing the signals. First, we trained one
neural network on all 8 signal types (Exp 1). Secondly, we
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Fig. 6. Visual comparison of signal types (Happy emotion in BPAD+ [41]).

TABLE II
CONFUSION MATRIX OF 10 EMOTIONS FROM BP4D+ [44]. KEY- HA:
HAPPY; SU: SURPRISE; SA: SADNESS; ST: STARTLE; SK: SKEPTICAL;
EM: EMBARRASSED; FE: FEAR; PA: PAIN; AN: ANGER; DI: DISGUST.

HA SU SA ST SK EM FE PA AN DI
HA | 931 | 0I5 0 .008 | .008 | .015 0 0 .008 | .015
SU | .007 | .902 | .021 0 .007 | .014 | .014 | .007 0 0
SA | .014 | .007 | 907 | .022 | .014 | .022 0 .014 0 0
ST | .007 0 .007 | .92 | .007 0 015 | .007 | .015 | .022
SK | .029 | .007 0 0 9 .014 | .022 0 .014 | .014
EM 0 0 .014 | .008 | .014 | .92 | .008 | .014 | .014 | .008
FE | .021 0 .007 | .014 | .014 0 93 | .007 0 .007
PA | .008 | .022 0 .008 | .014 | .021 | .014 | 913 0 0
AN 0 .008 0 0 0 0 0 .008 | .984 0
DI | .028 | .014 | .028 | .006 | .006 0 .006 | .021 .04 | .851

TABLE III
COMPARISON OF FEEDFORWARD NEURAL NETWORK VS. CLASSICAL
MACHINE LEARNING ALGORITHMS WITH FUSED SIGNALS FROM BP4D+.

TABLE I

ACCURACY OF FUSED VS. NON-FUSED SIGNALS.
Emotion Fused Accuracy | Exp 1 Exp 2
Anger 98.44% 81.67% | 84.05%
Happy 93.18% 71.96% | 79.93%
Fear 92.70% 67.71% | 79.84%
Embarrassment 92.08% 62.29% | 84.19%
Startle 92.03% 74.85% | 84.92%
Pain 91.37% 53.78% | 84.23%
Sad 90.78% 49.09% | 86.55%
Surprise 90.21% 63.42% | 78.21%
Skeptical 90.00% 52.59% | 79.93%
Disgust 85.14% 62.06% | 75.72%

trained 8 different networks, one on each of the signal types
(Exp 2). The average accuracy across each network was
taken as the final report. Both of these experiments were
conducted to compare the results of our fusion approach to
non-fused physiological signals. For the fused, Exp 1, and
Exp 2 experiments, using our feedforward neural network,
we achieved an average accuracy (across all 10 emotions) of
91.59%, 63.93%, and 81.16%, respectively.

For all emotions, Exp 2 outperformed Exp 1 for emotion
recognition accuracy. These results can be explained, in part,
due to the large differences in signals (Fig. 6). In Exp 1, we
trained one network on all 8 signal types. The network may
have had difficulty in learning the correct features due to these
differences. Although Exp 2 outperformed Exp 1, the fused
signals outperformed both of them for all emotions (Table I).
The lowest accuracy of fused signals is 85.14%, from disgust,
which has a higher accuracy compared to all single signal
experiments, except for sad from Exp 2, which had an accuracy
of 86.55%. These results show the expressive power of the
proposed fusion method for emotion recognition

For the fused signals, for many of the emotions, there are
few misclassifications of the other emotions (Table II). For
example, anger was misclassified as surprise and pain 0.8%
of the time (1 misclassified signal each), and the rest of the
signals were correctly recognized. Disgust was the lowest
accuracy at 85.14% and was incorrectly recognized as all
other emotions, at least once, except for embarrassed. It was
misclassified as anger the most often at 4% (6 signals). This
can partially be explained as disgust and anger are considered

Classifier Accuracy
Feedforward Neural Network 91.59%
Support Vector Machine 88.69%
Naive Bayes 86.67%
Random Forest 86.17%

similar expressions of condemnation [25].

Along with testing the validity of the fusion method, we also
wanted to investigate if a feedforward neural network is the
best approach to emotion recognition with fused signals. To in-
vestigate this, we conducted the same 10-fold cross validation
experiment on a Random Forest [3], Support Vector Machine
[6], and Naive Bayes classifier [15]. Each classifier was trained
with 90% of the signals, and the other 10% were used for
testing. In this experiment, the neural network outperforms all
three of the classical machine learning methods (Table III).
However, its important to note that each of other methods
still performed reasonably well, with a minimum of 86.71%
accuracy achieved by a random forest. Along with validating
the use of the network, this also shows the expressive power
of the proposed method, as it can be used with a range of
different classifier types.

Pain Recognition Application. An important and grow-
ing concern is the dependency of U.S. military on opioids,
including the increase in opioid-related overdoses [2]. The
overall quality of care can be improved by assessing pain.
If it is left unmanaged it can lead to adverse outcomes, both
physically and psychologically [35]. Motivated by this and
the use of wearable devices to collect physiological data [7],
we investigated using the proposed fusion method to accu-
rately recognize pain (as found in BP4D+). Again, using 10-
fold cross validation, we investigated our feedforward neural
network, and the 3 previously investigated classical machine
learning methods (Random Forest, Support Vector Machine,
Nave Bayes). We conducted experiments with 2 emotions (i.e.
pain and no pain), where all fused physiological signals that
were not labeled as Pain, were given the No Pain class.

Based on this experimental design, the proposed fusion
method can distinguish between Pain and No Pain with a high
degree of accuracy with the neural network (Table V). Less



TABLE IV
ACCURACY OF FEEDFORWARD NEURAL NETWORK AND CLASSICAL
METHODS FOR RECOGNIZING PAIN VS. NO PAIN, ON BP4D+.

Classifier Accuracy
feedforward Neural Network 98.48 %
Support Vector Machine 92.64% %
Random Forest 90.27%
Naive Bayes 89.77%
TABLE V
CONFUSION MATRIX OF PAIN VS. NO PAIN.
Pain No Pain
Pain 0.984 0.016
No Pain | 0.015 0.985

than 2% of the signals were misclassified as Pain, and the same
results can be seen for No Pain. Similarly, the proposed fusion
method can also be used with the classical methods for pain
recognition (Table IV). This is encouraging for future real-time
applications for recognizing pain in soldiers, and potential use
in home-based pain management systems [25].

Comparison to State of the Art. Zhang et al [44],
presented the first baseline using physiological signals from
BP4D+, however, this was for 45 randomly selected subjects,
not the entire dataset. Extracting hand-crafted features, they
report the results from two experiments. First, testing on 5
emotions (happiness, sadness, startle, fear, and disgust) they
report an accuracy of 59.5% using an RBF kernel SVM. Their
second experiment was on all 10 emotions, where they perform
a binary classification problem of low/high arousal. On this
experiment, they report an accuracy of 60.5%. Again, this
was only on 45 subjects from BP4D+, where we achieved
an accuracy of 91.59% across all subjects and emotions.

D. Results on DEAP

To conduct our experiments on the DEAP dataset, we con-
ducted single trial classification [14] on EEG data. We chose
this approach, as it will allow us to make fair comparisons to
current state of the art on this dataset. For these experiments,
we did not use the classical machine learning approaches, as
our evaluation in Section IV-C has shown the neural network to
outperform all of the tested classifiers on BP4D+ data. Consid-
ering this, we only used our feedforward neural network. We
investigated four binary problems. Namely, low/high arousal,
low/high valence, low/high liking, and low/high dominance.
As each signal was given a scale between 1 and 9, the
threshold for the low and high classes was placed in the
middle of the scale. This approach is the same as detailed
previously on the DEAP dataset [14]. We fused all 32 channels
of EEG data, using weights of [0,1], and performed single trial
classification, for each subject.

For the investigated binary problems, we obtained an aver-
age accuracy (across all subjects) of 95.27%, 95.5%, 96.03%,
and 96.47% for arousal, valence, liking, and dominance re-
spectively. These results can be explained in part, by the nature
of single-trial classification experiments. As they consider the

TABLE VI
COMPARISONS TO CURRENT STATE OF THE ART ON DEAP.

Arousal | Valence Liking Dominance
Proposed Method | 95.27% | 95.50% | 96.03% 96.47 %
Liu et al [20] 80.50% | 85.20% | 82.40% 84.90%
Rozgic et al [28] 69.10% | 76.90% | 75.30% 73.90%
Li et al [18] 64.30% | 58.40% | 66.90% 65.80%
Koelstra et al [14] | 63.10% | 65.20% | 64.20% N/A

variance within subjects, these experiments have been found
to go beyond the study of the average brain [26]. We also
compared our results to 4 state-of-the-art approaches from
this dataset (Table VI). We outperform all compared by at
least 10% across arousal, valence, liking, and dominance.
We outperform the initial baseline [14], by approximately
30% across arousal, valence, and liking (dominance was not
analyzed). This can be attributed to the ability of the proposed
method to give accurate representations of a range of emotion.

V. CONCLUSION

We have presented a new method for fusing physiolog-
ical signals for emotion recognition. The proposed method
increases the influence of high-variance signals and decreases
the influence of low-variance signals on emotion recognition.
We tested the utility of the proposed method by comparing to
all non-fused signals from BP4D+, showing the improved per-
formance of the fused signals. To the best of our knowledge,
this is the first work to present such work using physiological
signals on all subjects from BP4D+. We also detailed state-
of-the-art performance on DEAP EEG signals. The proposed
method outperformed previous works by at least 10% on
arousal, valence, liking, and dominance.

The proposed method has the ability to generalize across
different types of physiological signals (e.g. blood pressure,
heart rate, EEG). As the only constraint on the signals is that
they have the same length, the proposed method has potential
to be useful for representing a variety of signal types not
discussed here such as heart signals (e.g. electrocardiography
(ECG) and arterial pressure). Considering this, it has broad
applications in pain recognition, stress analysis, lie detection,
prediction of ASD in children, and potential to predict heart
attacks from ECG data. With the increase of ubiquitous
computing the proposed method can be used in real-time
settings such as home health care systems, and for increasing
solider survivability on the battlefield.

Although the proposed approach shows encouraging results
on physiological data, emotion is a subjective experience that
can be seen in more modalities than just physiological (e.g.
image, thermal). This is one limitation of the current work,
as only physiological data is used. Considering this, we will
extend the work to fusion of multiple modalities including
using variance to guide the fusion of deep features across
multiple modalities.
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