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Abstract—In this work, we present the synthesis of physiolog-
ical and motion data to classify, detect and estimate affective
state ahead of time (i.e. predict). We use raw physiological
and motion signals to predict the next values of the signal
following a temporal modeling scheme. The physiological signals
are synthesized using a one-dimensional convolutional neural
network. We then use a random forest to predict the affective
state from the newly synthesized data. In our experimental
design, we synthesize and predict both stress and mediation
states. We show the utility of our approach to data synthesis for
prediction of stress and meditation states through two methods.
First, we report the concordance correlation coefficient of the
synthetic signals compared to the ground truth. Secondly, we
report prediction results on synthetic data that are comparable
to the original ground-truth signals.

Index Terms—synthesis, stress, meditation, physiological, mo-
tion, prediction

I. INTRODUCTION

Stress is traditionally diagnosed by psychologists using
offline procedures such as asking questions [10], however,
more objective measures such as physiological readings can
be used to diagnose stress in place of subjective questions
[7]. Considering this, there has been interesting work in
automatically recognizing stress in recent years. Jebelli et al.
[8] investigated recognizing stress in workers using electroen-
cephalogram (EEG) data. The EEG data was collected, from
construction workers, across 14 different channels using a
wearable EEG headset. After removal of noise artifacts in the
data, they trained a deep convolutional neural network (CNN)
to recognize stress. They achieved a maximum accuracy of
86.62%. Also, using EEG data, Liao et al. [12] trained a deep
neural network to recognize stress. They collected EEG data
from 7 subjects that listened to music for 10 minutes. Using
an 80/20 split of the data (train on 80% and test on 20%),
they trained a deep neural network achieving an accuracy of
80.13%.

Although there has been success in recognizing stress using
EEG data, another interesting modality that has been used is
thermal data. Cho et al. [4] detected breathing patterns, in
the thermal data, by analyzing temperature changes around
the subject’s nostrils. They transform the 1D breathing signals
into 2D respiration variability spectrograms, which are then
used to train a CNN. They also propose a data augmentation
technique to train on a small sample size. They are able to
recognize between two and three levels of stress with 84.50%
and 56.52% accuracy, respectively.

Although these results are promising, there are two chal-
lenges that we aim to address in this paper. First, these works
focus only on stress, where we predict stress, amusement
and meditation (i.e. relaxed) states. Investigating mediation
along with stress and amusement is important as it has been
found that when meditation is practiced for 15 minutes, two
times a day, stress and anxiety are reduced due to being in
a state of deep rest according to the subject’s physiological
state [5]. Secondly, all of them utilize data that has been
collected, processed and then classified. We are interested
in the prediction of mental states, especially in a real-time
medical setting, as we aim to predict the subject’s mental state
ahead of time. Due to this, the signals from collected datasets
will not be sufficient for our experimental needs. Considering
this, we propose a method for synthesizing the next step
(i.e. time) of physiological and motion signals using a one
dimensional CNN (1DCNN). Given these synthesized signals,
we then predict stress, amusement and meditation states using
a random forest classifier. The major contributions of this work
are two-fold and given below:

1. We propose a temporal modeling approach for synthe-
sizing a given modality (e.g. physiological signals) from
raw signals to model affective states ahead of time. This
allows us to effectively predict the subject’s mental state
ahead of time, which is a specific aim of this work.

2. To the best of our knowledge, we also provide the
first baseline results on meditation state prediction
from physiological and motion data from the publicly
available dataset, wearable stress and affect detection
(WESAD) [15]. This investigation into mediation has
potential applications for ultimately treating affective
disorders such as stress.

II. PHYSIOLOGICAL AND MOTION DATA SYNTHESIS

In this work, we propose synthesizing futuristic signals for
detecting affective states beforehand. First, we consecutively
use a sequence of previous and current observation of a signal
to predict the next observation of signal. As a result, we obtain
synthetic data about futuristic affective states even before the
occurrence of the affective states. We then use the synthesized
data to train a machine learning classifier to recognize an
affective state, effectively predicting the new state, ahead of
time.
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Fig. 1. Overview of proposed Approach. The original signal is used to train a CNN to predict signal value in time step t+ 1 from time step t. Features are
then extracted from the synthesized signal to predict the affective state. Here, Conv means convolution and FC means fully connected layer.

A. One dimensional CNN for data synthesis

We propose a simple, yet effective approach to synthesize
physiological and motion data. We have applied 1DCNN [9]
to synthesize the signal, given its ability to capture spatiotem-
poral relationships in data. We have used signal values from t
number of time steps (prior and current) to train the 1DCNN
to predict signal value in the next (future) time step t + 1.
Our 1DCNN consists of three convolution layers, two fully
connected layers (64, 32), two dropout layers (0.5, 0.5), and
an output layer. We have used linear as activation function
in the output layer and relu as activation function in the rest
of the layers. Convolutional layers contain variable number of
filters (128, 64, 64) and fixed kernel (3 ∗ 3) size, as well as
padding. We have used Adam as the optimization algorithm,
given Adam’s ability for faster convergence, to train the model
with learning rate and number of epochs set to 0.01 and
500, respectively. See Fig. 1 for an overview of the proposed
approach.

B. Random forest for affective state prediction from synthetic
signals

In the prediction phase, we calculated 10 statistical features
[13] from each synthetic signal from a given range of time
steps. More specifically, we computed the following 10 fea-
tures: mean, maximum, minimum, index of maximum values,
standard deviation, kurtosis, skewness, interquartile range,
energy, and mean absolute deviation. We then use the newly
created feature vector to train a random forest classifier [3] to
predict stress, amusement, and meditation. In our experiments,
we tuned the random forest performing grid search over
the parameters (number of trees = {5, 10, 20, 40, 80} and
maximum depth of trees = {50, 100, 200, 400, 1000}).

III. EXPERIMENTAL DESIGN AND RESULTS

A. Dataset

WESAD [15] dataset is collected from 15 graduate students
in which 12 of them are male and 3 are female, with an
average age of 27.5(±2.4). Physiological and motion data are
captured from the chest and wrist of the participants using
RespiBAN and Empatica E4 devices. In total, WESAD dataset

contains 10 modalities (chest-worn modalities are sampled
at 700Hz) including acceleration (ACC) X, Y, Z, electrocar-
diogram (ECG), electrodermal activity (EDA), electromyogra-
phy (EMG), temperature and respiration. The data collection
procedure consists of four states: neutral (induce a neutral
affective state; this phase is 20 minutes long), amusement
(induce a happy state; this phase is 6.5 minutes long), stress
(the participant performed two tasks: public speaking and
mental mathematics solving following Trier Social Stress Test
[11] to mimic the stress behavior. Stress phase is 10 minutes
long), and meditation (breathing exercise to induce neutral
state after the performance of amusement and stress states.
This phase is 7 minutes long). The duration of all experiments
(including 15 subjects) is 11 hours. Note that, in this work, we
only used the modalities captured via the chest-worn device
since wrist-based modalities could be neglected in the presence
of chest-based modalities [15].

B. Evaluation

To evaluate our model, we first synthesize data and then use
the synthesized data to detect affective state ahead of time. We
performed 3-fold subject independent cross-validation in both
signal synthesis and affective states prediction. We used the
concordance correlation coefficient (CCC) [16] score as an
evaluation metric to measure the effectiveness of the synthesis
model given that CCC score (range: [−1, 1], higher is better)
takes care of both correlation and accuracy. On the other
hand, we used precision, recall, and F1-score to measure the
performance of affect prediction.

C. Data Synthesis

We preprocessed the dataset before performing synthesis.
More precisely, we applied Savitz Golay filter [14] to smooth
the signal. Then, we used a factor n to re-sample the dataset
by taking the average of n consecutive values for a given
signal. Finally, we performed min-max normalization in be-
tween [0, 1] for each signal for better generalization of the
neural network. To validate the effectiveness of the synthesis
approach, we experimented with different durations of time to
synthesize the signals. As in time T1, T2, and T3 settings,
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Fig. 2. Original and synthetic signals for subject 4 of WESAD dataset during stress phase. Each plot represents 3 seconds worth of signal. Here, X-axis and
Y-axis represent time step and signal value in that order. NOTE: best viewed in color.
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Fig. 3. Distribution of original and synthetic signals of entire WESAD dataset. NOTE: best viewed in color.

TABLE I
SYNTHESIS RESULTS ON WESAD DATASET USING PROPOSED 1DCNN.

Signal CCC score
Time T1 Time T2 Time T3

ACC X 0.9909 ± 0.0054 0.9856 ± 0.0119 0.9899 ± 0.0014
ACC Y 0.9675 ± 0.0272 0.9711 ± 0.0081 0.7882 ±0.2552
ACC Z 0.9957 ± 0.003 0.992 ± 0.0026 0.9943 ± 0.0024
ECG 0.8104 ± 0.0327 0.5001 ± 0.0922 0.3995 ± 0.0602
EMG 0.4381 ± 0.6313 0.5837 ± 0.0561 0.3407 ± 0.4757
EDA 0.9928 ± 0.0012 0.9964 ± 0.0009 0.9927 ± 0.0036
TEMP 0.95 ± 0.0268 0.9401 ± 0.0437 0.7405 ± 0.1785
RESP 0.9895 ± 0.0009 0.9697 ± 0.0065 0.9563 ± 0.0094

we used 0.25, 1, 2 second(s) worth of data as feature vector

to synthesize 0.01, 0.04, and 0.1 second(s) worth of data,
respectively.

As it can be seen from Table I, in T1 T2, T3 settings, the
proposed model synthesized 7/8, 6/8, and 6/8 signals with
high CCC scores, respectively. In the case of EMG synthesis,
we obtained a high CCC score for some subjects while our
model failed to generalize well on some other subjects. This
result can be partially explained by the personalized influence
of subjects, since the representation of affect states including
stress, has variability among people [15]. From Figures 2
and 3, we can observe that our model was able to learn the
distribution of all signals with high margin except the EMG
signal. We can see from Figure 2 that the EMG signal moves
back and forth rapidly from one time step to the next; that
could cause challenges when predicting EMG signal.



TABLE II
CLASSIFICATION RESULTS ON BOTH ORIGINAL AND SYNTHETIC WESAD DATASET USING RANDOM FOREST.

Detection Setting Original data Synthetic data
Precision Recall F1-score Precision Recall F1-score

Stress vs Baseline 0.71 ± 0.06 0.68 ± 0.10 0.69 ± 0.08 0.71 ± 0.10 0.66 ± 0.11 0.68 ± 0.10
Stress vs Amusement 0.54 ± 0.11 0.61 ± 0.06 0.57 ± 0.10 0.55 ± 0.15 0.56 ± 0.07 0.55 ± 0.11
Stress vs Meditation 0.72 ± 0.05 0.71 ± 0.06 0.71 ± 0.06 0.71 ± 0.02 0.7 ± 0.02 0.71 ± 0.02
Stress vs Rest 0.76 ± 0.03 0.7 ± 0.06 0.73 ± 0.04 0.74 ± 0.03 0.67 ± 0.07 0.7 ± 0.04

D. Prediction of Synthesized Data

To predict the affective state, we calculated 10 statistical
features from n consecutive steps (in our experiment, we set
n = 25) of all synthetic signal types (i.e. multimodal), result-
ing in 80 features (10 features × 8 signal types). For affective
state prediction, we used signal synthesized in T1 setting. To
provide a baseline comparison with the original signal, we also
calculated the same 80 features from the raw signal dataset.
To test the effectiveness of the proposed synthesis model for
stress, amusement, and meditation detection, we performed
both one vs one and one vs rest classification using a random
forest classifier. It can be observed in Table II that the results
we obtained from synthetic data are comparable to original
data. Some of the differences in accuracy can partially be
explained by the fact that our model synthesized EMG poorly
for some subjects, and also we lost some precision in the
data during synthesis (See Figures 2 and 3). Moreover, Table
II suggests that the prediction of stress from amusement is
difficult, which can be partially explained due to the subtlety of
amusement among subjects [15] and the difficulty of valence
detection from physiological signals.

IV. CONCLUSION AND DISCUSSION

We have presented a method for synthesizing physiological
and motion signals for predicting stress and meditation. We
have shown the efficacy of our method by comparing the
synthesized signals to the original ground truth data. We have
shown that the proposed method can accurately synthesize
these signals across varying time steps (Table I). We have
also shown that the accuracy of the synthesized signal for
predicting stress, amusement and mediation is comparable to
the classification accuracy of the original ground truth signal.

Although these results are promising, showing a first step
towards the prediction of stress, amusement and mediation
states, there are open challenges in this paradigm. The end
goal of the model is to synthesize data over longer periods
of time to predict the affective state, therefore, the problem
can be formulated as a dynamic regression problem in which
we predict the signal value of time t + 1 using previous
time t. After making the prediction at time step t + 1, we
will incorporate the predicted (i.e. synthesized) data f(Xt+1)
in our feature vector to use the synthesized data to make
prediction (i.e. synthesize data) at next time step t+2 and so
on. Therefore, after making t predictions, our feature vector
will only contain the synthetic signal for future predictions. If

the model incorporates some degree of error (e.g. noise, drift),
then error propagation must be handled. This error propagation
will introduce the out of distribution challenge in a dynamic
setting. It has been shown that the out of distribution problem
can degrade the performance of machine learning models [1].

We will also explore the online learning [2] paradigm
to synthesize data in this dynamic setting. Along with this
paradigm, we will also explore continuous learning [6] in
which we will first train the model on raw data to build an
initial synthesis model that will be improved over time using
reinforcement learning.
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