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Abstract—Facial expression Recognition is a growing and
important field that has applications in fields such as medicine,
security, education, and entertainment. While there have been
encouraging approaches that have shown accurate results on
a wide variety of datasets, in many cases it is still a diffi-
cult problem to explain the results. To enable deployment of
expression recognition applications in-the-wild, being able to
explain why an particular expression is classified is an important
task. Considering this, we propose to model flow-based latent
representations of facial expressions, which allows us to further
analyze the features and grants us more granular control over
which features are produced for recognition. Our work is focused
on posed facial expressions with a tractable density of the
latent space. We investigate the behaviour of these tractable
latent space features in the case of subject dependent and
independent expression recognition. We employ a flow-based
generative approach with minimal supervision introduced during
training and observe that traditional metrics give encouraging
results. When subject independent expressions are evaluated, a
shift towards a stochastic nature, in the probability space, is
observed. We evaluate our flow-based representation on the BU-
EEG dataset showing our approach provides good separation of
classes, resulting in more explainable results.

I. INTRODUCTION

Facial expression recognition (FER) has a broad range of
applications in medicine [1], security [2], and education [3] to
name a few. There have been encouraging results in the field
through investigation of computer vision and machine learning
to encode expression information from facial features [4].
Earlier methods were devised with the notion of Ekman and
Friesen [5], that stated emotions are perceived in the same way
regardless of the culture. Conversely, recent developments in
psychology and neuroscience argue otherwise which indicates
that emotions are not universal and are highly subjective
per person, context, and expression [6], [7]. The attempt to
generalize expression is a challenging problem [8], however,
to have real-world applications in human affect analysis [9]
and human-computer interactions [10], it is a necessary step.
With the advent of deep learning, researchers have been able
to achieve state-of-the-art results on FER problems [11], [12],
[13], but the interpretation of the complex relationship between
the deep features, of different classes, is still a black-box
concept. Although most of the literature has shown to perform
reliably even on in-the-wild data [14] [15], these methods
primarily focus on the output and the validation of the their

output. This paper deviates from this traditional approach
towards a more explicit way of modelling facial expressions
with more control over the deep features that the model is able
to produce and classify.

Traditional classification methods [17] [18] make the under-
lying assumption that the given dataset is a normal distribution.
This is mostly false for high-dimensional natural signals such
as images [19], which can result in an overall decrease in
the accuracy of recognition models [20]. Recent advances in
generative modelling has taken the field one step closer to a
more tractable density estimation of high-dimensional images.
For this purpose, we employ state-of-the-art generative models
because of their ability to find meaningful distributions in
the latent space [21], [22]. Specifically, flow-based generative
models [23] have gained traction in recent years due to
their ability to find explicit densities of the given dataset.
Normalizing flows [24] are a simple, yet powerful technique
which are capable of transforming densities of complex data
into simpler forms using bijective and differentiable series of
functions. Once the multiplex data has been transformed to
a simple distribution, techniques such as Gaussian mixture
modelling, and maximizing the log likelihood can be applied
for classficiation problems (see Section III-A). Considering
this, the contributions of this work are 3-fold:

1) A flow-based latent representation of facial expression
is proposed. We model these representations for the task
of expression recognition, in both a subject dependent
and independent manner.

2) We visualize the high-dimensional features in the latent
space and explore the subjective nature of expressions
and observe notable differences between expressions of
different subjects.

3) Using a state-of-the-art generative model, GLOW [16],
we demonstrate the ability to interpolate between dif-
ferent expressions validating that the flow-based latent
vectors form meaningful representations of expression.

II. RELATED WORKS

A. Generative Models

A range of generative models for classification purposes
have been explored. GANs [25] work by finding the implicit



(a) Proposed flow-based latent space representation.

(b) Training for facial expression recognition. (c) Testing for facial expression recognition.

Fig. 1: Overview of proposed architecture for flow-based latent space representation of facial expressions. (a) f(x) is the
original Glow model [16] which outputs the latent vector Z = {z4, z3, z2, z1}. h(z1, y) is a conditional flow model which
takes as input the latent sub-vector z1 and the one-hot encoded class label y and outputs z′1, which is then used as a sub-vector
in the new latent space Zcond. (b) x is the batch of input images and y is the set of known expression classes (e.g. happy)
which are fed into the proposed model. Each iteration outputs two loss values, Lcond is the conditional loss (Equation 3)
and Lclass is the class loss (Equation 5). Ltotal is the combination of Lcond and Lclass (Equation 6). (c) ypred is computed
by running the test input xtest through f(x) once and h(z1, yc) c times where c ∈ {1, 2, .., c} and taking the argmax of the
probabilities of the models output (Equation 4). We refer the reader to Section III for more details.

density of the dataset through their adverserial structure and
classification is done via the discriminator. Another type of
generative models are VAEs [26], which inexplicitly optimize
the log-likelihood by maximizing the ELBO. These models
are not suitable for classification as they suffer from posterior
collapse [27] wherein the density of the model closely matches
the uninformative prior of the subset of latent data.

Yang et al. [28] used conditional generative adversarial
networks to generate six prototypical expressions, which are
then used to fine-tune convolutional neural networks. They
look at the minimum distance between an input image and
the generated images for classification. They report state-of-
the-art results on multiple publicly available datasets. Xie et al.
[29] proposed a 2-branch generative adverserial network that
disentangles identity and expression information. They showed
that this approach learns a discriminative representation of
expression that is well suited for classfication.

B. Flow-based Modeling

Semi-conditional Normalizing flows [30] employed a com-
bination of unconditional (fw) and conditional flows (hθ)
wherein they concatenated the hidden features with the one-hot
encoded vector of labels. This new vector was then passed on
to the conditional flow (hθ) which was used for classification
purposes. This is similar to semi-supervised conditional GANs
[31]. Experiments were performed on toy datasets and the
MNIST classification problem. Inspired by the findings of
this work which utilizes only last k dimensions of hidden
data for conditional flow transformation, we employ a similar
approach to avoid overfitting the model and maintain the
balance between maximizing likelihood and minimizing the
classification loss. Given k classes, this approach requires only
1 forward pass to classify a new test data.

FlowGMM [32] utilized the RealNVP [33] model to train



each class to be associated with a different mean (µk) and
standard deviation (σk). Post training, Bayes’ decision rule
was applied on any new test point to gather the class with max
probability. This involved random generation of means and
standard deviation to be assigned to different classes. Training
was semi-supervised with only 10% of the data being labelled
at each epoch. They were also able to retain the quality of the
generated images and applied the method on several image
classification problems (e.g. MNIST [34]). They also show that
classification can be extended beyond images by performing
text classification on different dataset such as UCI, AG-News,
Yahoo answers and found that the methods outperform other
traditional classification methods.

C. Expression and Explainability

Although there are less works that focus on explainability
and expression, there are some interesting works that do focus
on this area. For example, Kandeel et al. [35] used explain-
ability to determine the best convolutional neural network
architecture for recognizing the expression of drivers. They
investigated the saliency maps of the output from the networks
to determine the best architecture to use. They found that using
this approach resulting in improved architecture selection,
which ultimately lead to improved driver expression recog-
nition accuracy. Weitz et al. [36] investigated using Layer-
wise Relevant Propagation and Local Interpretable Model-
agnostic Explanations to help explain how neural networks
distinguished between expressions of pain and other expres-
sions such as happy. They were able to distinguish key areas
of the face that separated painful expressions from the other
expression classes. Escalante et al. [37] designed a challenge
around explaining video interviews. Their challenge proposes
that an explainable system must be understandable by people
in affective computing, signal processing social sciences, and
psychology. Considering this, the challenge evaluation criteria
included clarity, explainability, and soundness of the result.

We are motivated by these works, as being able to explain
how different facial expressions are recognized can help the
system better communicate with it’s users [38], which can lead
to to more public trust in real-world affective systems [39].
Considering this we extend the state of the art by incorporating
generative models, along with flow-based models to give more
robust visualizations and explanations for facial expression
recognition. We show that the proposed approach allows for
clear visualization of clusters of subject’s expressions.

III. FLOW-BASED LATENT REPRESENTATION OF FACIAL
EXPRESSIONS

A. Normalizing flows

Normalizing flows [24] are powerful distribution approxi-
mators which are comprised of a chain of transformations that
transform a complex distribution into a simple one. Mathemat-
ically, it is defined as a bijective mapping f : X → Z , where
X defines the data space and Z defines the density of the latent
space, which is typically chosen to be Gaussian. To infer the
unknown probability density X , we apply the inverse of the

transformations f−1 : Z → X to generate new data from
the data space X using change of variables theorem. Fig ??
provides a brief description of the functioning of normalizing
flows, as applied to facial expressions.

Given a multivariate random variable z with a probability
density z ∼ π(z), which is a function of unknown variable x
given by z = f(x) (and so, x = f−1(z)), we need to infer the
probability density of x ∼ p(x). Change of Variable theorem
states that during any transformation, the total probability mass
must be preserved, therefore the density of both z and x must
always sum up to 1.∫

p(x)dx =

∫
π(z)dz = 1

The new density p(x) is then the product of original density
π(z) and ratio of the volumes, which is typically given by
calculating the determinant of Jacobian dz/dx.

p(x) = π(z) ·
∣∣∣∣det dzdx

∣∣∣∣
Substituting z = f(x), we get

p(x) = π(z) ·
∣∣∣∣detdf(x)dx

∣∣∣∣
Applying log on both sides, we get

log(p(x)) = log(π(z)) + log

∣∣∣∣detdf(x)dx

∣∣∣∣ (1)

The calculation of log determinant at each step is expensive
and therefore research involves finding an efficient way to
avoid the direct calculation of log determinants. The functions
f(x) and f−1(z) are parametrized by deep neural networks
whose core components are called affine coupling layers.
These layers are defined by affine transformations of the input
x as y = s⊙x+t, where s and t are neural networks. For more
details on normalizing flows, we refer the reader to works from
Dinh et al. [33], Kobyzev et al. [23], and Kingma et al. [16].

B. Supervised Learning

We examine the conditions where we are trying to solve
a supervised classification task and learn a generative model
simultaneously. For example, we may want to be able to
generate new face images with an arbitrary expression and
be able to classify the kind of expression that was generated.
Subsequently, we use the feature space generated by Glow
[16] to take full advantage of the labelled data available to us.
Current works include the multi-scale architecture of Glow
where the latent space Z is comprised of multiple sub-vectors
Z = {z4, z3, z2, z1}. This kind of architecture enables fine-
grained intermediate features which adds value to the interme-
diary representations [33]. We use this to add conditionality
and supervision to the model. The overall architecture is shown
in Fig. 1. It’s a three-fold approach consisting of modifying the
current architecture to include conditionality and supervision,



training the modified architecture and inferring class labels
from the final model.

Fig. 1a shows the overview of the proposed architecture.
Similar to the work from Atanov et al. [30], the architecture
consists of two parts, the original flow model f(x) which maps
x → Z and the smaller, conditional flow model h(z1, y) which
maps z1 → z′1. Here, h is a subset of f with much fewer layers
and blocks (Section IV-B). We use a one-hot encoded vector
of labels y and concatenate it with the latent sub-vector as
z1 = concat(z1,y) before passing it through h. Once we have
the new latent sub-vector z′1, we concatenate it back with the
original Z vector which now becomes Z = {z4, z3, z2, z′1}.
The proposed approach extends the work of Atanov et al.
[30] in terms of optimizations. They compute the marginal
likelihood p(x) by optimizing the joint density Eyp(x, y). We
split this approach by first optimizing the conditional likeli-
hood p(x|y) through the loss function Lcond and implicitly
optimizing p(y) by minimizing the classification loss Lclass.
This kind of decoupled approach allows us to independently
monitor the key objectives involved in classification tasks,
which in this case are the two losses Lcond and Lclass.

Training the model consists of maximizing the log likeli-
hood in Equation 1 and also minimizing the classification loss
at each epoch. We now focus on formulating the two losses
Lcond and Lclass under the new supervised conditions. Fig. 1b
shows the overview of model training with 2 different losses
while adopting the Z → Zcond module from Fig. 1a. The
new model h has dependence on the label y, so instead of
maximizing the likelihood log p(x) from Equation 1, we now
maximize the conditional log p(x|y) as

log(p(x|y)) = log(π(z))+log |det∂f(x)
∂x

|+log |det∂h(z, y)
∂z

|.
(2)

This likelihood is then maximized by minimizing the condi-
tional loss which is given by

Lcond = − log(p(x|y)). (3)

Next, the classification loss, during training, is obtained by
evaluating p(y|x), on each of the c classes as

ypred = argmax
i∈{1,2,...c}

p(x|y = i)p(y = i), (4)

where c is the total number of classes. It’s important to
note that the first two terms of p(x|y = i) ,in Equation 2,
undergo only one forward pass as it’s independent of y. This
approach accounts for relatively inexpensive calculations of
log determinants multiple times [30].

The class loss is then calculated using the cross entropy loss
on the prediction and labels

Lclass = CrossEntropy(ypred, y). (5)

The overall loss is given by the equation

Ltotal = Lcond + λLclass. (6)

For our experiments, we have empirically found a λ of 0.3 to
optimize both losses equally since the conditional loss Lcond

and the classification loss Lclass must converge synchronously.
Fast convergence of Lcond might lead to model underfitting on
classification and faster convergence of Lclass might lead to
overfitting the classification with poorly preserved probability
density. See Fig. 1b for an overview of training. During testing,
a new face image xtest is fed into f once and h for a total of
c times, where we obtain the prediction by using Equation 4.
See Fig. 1c for an overview of testing.

IV. EXPERIMENTAL DESIGN AND RESULTS

A. Dataset

To validate the proposed flow-based latent representation of
facial expressions, we evaluate the BU EEG [40] dataset. It is
a multimodal emotion dataset which comprises of posed and
authentic facial expressions, facial action units (FACS) [41]
and EEG signals. The dataset contains data collected from 29
subjects of various ethnicity and backgrounds with 22 Asian,
2 White, 4 Mid-eastern and 1 from other ethnicity. For the
facial features, there are 29 videos, for each subject, which is
∼25 minutes in length at 24 fps with size 250×350×3. Facial
expression segments have been extracted from the videos
as part of data preprocessing using the metadata files for 6
prototypical expressions - Anger, Disgust, Fear, Happiness,
Sadness and Surprise, with a total of 54511 frames. These
expressions are posed under the lab environment. The se-
quence of frames have been run through DeepFaceLab [42]
face detector and cropped to a size of 256 × 256. The final
size of the images have been kept at 64 × 64 × 3. It is
important to note that there is some imbalance, in terms of total
number of frames for each expression, with ∼ 9% difference
in the minimum and maximum number of frames (surprise
and disgust, respectively).

B. Implementation Details

The code is implemented in the PyTorch framework [43].
The model has been trained on 8 NVIDIA GPUs for a total of
1200 epochs with a learning rate of 1e-4 for both f and h. The
batch size was kept at 32 with image size of 64× 64× 3. The
Glow model f consisted of 4 blocks of 32 stacked Conv-Relu-
Conv layer (called flows). Output of each block corresponds
to the latent sub-vector of Z = {z4, z3, z2, z1}. Similarly, the
unconditional model h is the subset of f which consisted of
4 flows and 1 block. The model architecture has been adapted
from Rosanality’s1 implementation of Glow.

C. Expression Recognition Results

The proposed approach can be applied to facial expression
recognition, as can be seen in Table I. It is noteworthy to
point out that to the best our knowledge, this is the first work
that performs facial expression recognition using normalizing
flows. Since our focus is to showcase the potential applications
of these techniques in the domain of affective computing,
we present our results along with other experiments extended
through our work. The first row of Table I presents average

1https://github.com/rosinality/glow-pytorch



Data type Classifier Accuracy (in %)

z-(latent) Flow based classifier (ours) 87.5

t-SNE embeddings

Random Forest 96.5

Extra Trees 89.23

AdaBoost 69.12

Decision Tree 94.12

TABLE I: Accuracy score on different classifiers using z data
and t-SNE embeddings of z data

Ang
er

Disg
us

t

Fea
r

Hap
pin

ess

Sad
ne

ss

Surp
ris

e

Anger 820 90 12 2 7 0
Disgust 107 944 50 14 11 0

Fear 4 23 629 63 6 7
Happiness 2 10 49 926 10 3
Sadness 17 14 16 20 826 9
Surprise 6 22 67 38 27 882

TABLE II: Average confusion matrix of facial expression
recognition for 10-fold cross validation.

accuracy of 10-fold cross validation on uniform folds of
the entire BU EEG [40] dataset. As can be seen in Table
II, the majority of expressions were recognized with rela-
tively high accuracy. Overall, surprise had the lowest average
misclassification error compared to other expressions. This
can be explained, in part, by the large visual differences
between surprise, and the other expressions, as can be seen
in Fig. 4. These results are encouraging and further validate
that meaningful information can be extracted from the low
dimensional representations of the data.

D. Visualization and Explainability

We hypothesize that the proposed flow-based latent repre-
sentation of facial expressions will provide accurate visual-
ization and greater explainability. To test this hypothesis, we
embed the latent representation of the z′1 latent vector into
2D space using the t-SNE method [44]. Fig. 2a shows the
plot of test images belonging to 6 different expressions from
29 subjects. Each color corresponds to an expression class
and it can be seen that 29 clusters are formed denoting each
subject, with their expressions, per cluster. This naturally leads
to the question, is this visualization any better than what we
get with deep features? To answer this question, we juxtapose
Fig. 2a with Fig. 2b, which is a t-SNE output of deep features.
We used a convolutional neural network (CNN), on the same
test data, which comprises of four stacks of residual blocks.
Each block contains a pair of Conv-BatchNorm-ReLU layers
followed by two dense connections. This model performed
reasonably well, obtaining an accuracy of 74% on the test
set, however, we can see no discernible pattern in the plot
compared to the latent representation. Even though it has
formed different clusters, they do not associate with either
subjects or different expressions.

(a) Flow-based t-SNE. (b) CNN t-SNE.

Fig. 2: Flow-based vs CNN comparison of t-SNE embeddings
of latent data during subject dependent classification.

Fig. 3: Flow-based t-SNE embeddings of test data during
subject independent classification.

Explainability of AI, especially in deep learning, is quite
important when solving and realizing real-world problems.
The proposed method is a step towards tackling the black
box nature of neural networks which restricts the entry of
AI into key fields such as medicine and security. The flow-
based visualization can give us key insight into the subjective
nature of expression [7]. We are able to see that the flow-
based latent approach to represent expression was able to
extract meaningful information such as each subject and their
corresponding expressions are separable, therefore they are
largely unique and can be easily classified. On the other hand,
the visualization of the deep features does not offer this same
insight as the clusters contain both subjects, and similar and
different expressions.

To further explore this phenomenon of the latent space vi-
sualization we asked the question, will this specific clustering
hold when subject independent experiments are conducted?
To answer this question, we trained on 28 subjects of the
BU-EEG dataset, and left one out (subject 29) for testing.
The t-SNE plot for the latent vector of this test subject
can be seen in Fig. 3. We see that the patterns veers away
from the deterministic nature (Fig. 2a) to a more stochastic
behaviour. This again aligns with work that details the biased
and subjective nature of human emotions (e.g. expression)
[45]. This visualization allows insight into the difficulties



Fig. 4: Interpolation of 6 prototypical expressions from neutral.

associated with generalization of facial expressions, such as
different expressions of emotion are fuzzy, and can overlap
(i.e. they are similar) [46].

In addition to this, we use an extended application of Glow
[16] to visualize the interpolation of a test face image to
other prototypical expressions. To generate high quality facial
expressions, we zero out the z1 of the latent vector Z from
our model and run it for a total of 6000 epochs. This has to do
with the fact that retaining the z′1 sub-vector in Zcond deters
the reconstructed image. Then, for each expression class c, we
calculate pairs of averages in the latent space (zcavg, z

other
avg ) for

all the training data, where zotheravg is the average of all the other
classes combined except c. To interpolate to a specific expres-
sion for an arbitrary image xtest, we add the corresponding
ztest with the difference of the zcavg and zotheravg . See Fig. 4
for generation of the 6 prototypical expression from a neutral
expression. This experiment was conducted to highlight the
potential use cases of this approach in generating new facial
expression to accommodate for class imbalance problems. As
our model is able to distinguish between different expressions
subjectively, the generated expressions for subjects will be in
close proximity of the subject’s original expression.

V. DISCUSSION

We detail some of the potential use-cases of the proposed
method in the context of ethics and privacy for applications in
affective computing. To be able to enhance a machine’s ability
to decode and respond to the affective states of a human, there
is potential breach of privacy involved [47]. With the high
quality generative ability of flow-based models, it is possible
to address some of these ethical concerns and simultaneously
leverage the full extent of meaningful classification that it
performs. Federated learning [48] can be incorporated in the
current method to have a more personalized and secure system
in place. Only the deepest latent features z can be processed
centrally and rest of the modules, f and h can be trained
locally avoiding any bottlenecks. These latent features z,
although play a significant role in modelling the true data,

are usually considered Gaussian noise in the outside world.
Moreover, the encoder-decoder nature of f(x) and f−1(z) can
be employed as encryption and decryption keys [49] further
bolstering the security aspects.

A difficult task in affective computing is the collection of ro-
bust, accurate data [50]. Collecting data with true annotations,
be it for expression or emotion, involves immense amounts
of labor. Due to the flow-based model’s ability to interpolate
between the latent space to produce meaningful facial images
[16] (as shown in Section IV-D), we can potentially impart
subjective attributes of the facial features without the need of
the original data. This reduces the need for copious amounts of
data where relevant tasks can then be managed only through
sample data. This also gives the opportunity to steer clear
from some of the ethical concerns encountered along the way,
such as collecting data of painful expressions [51]. This has
the potential to support these future applications (e.g., pain
recognition) of affective computing.

The proposed approach has broad impacts in fields such
as medicine, security, and defense. We hypothesize that the
latent space representations are useful for medical applications
such as recognition of disorders including, but not limited
to, Autism Spectrum Disorder and Post Traumatic Stress
Disorder. As previously mentioned, using Federated Learning
along with the proposed method can significantly improve
security and user privacy. We also hypothesize that the latent
space can be used to represent different signals aside from
images. This can include physiological signals such as heart
rate and EEG, thermal images, and 3D and 4D facial models.
Considering this, our future work includes investigating the
flow-based latent representation of EEG data, which may allow
for a less noisy representation of the signal [52]. Along with
this, we will also investigate adding more generalizability to
the model, however, the subjective nature of facial expressions
and emotions have been explored before. Our findings align
with that of Hinduja et. al. [53] which statistically showed, by
evaluating facial expressions, that self-reported emotions are
different and subjective compared to expected emotions.

VI. CONCLUSION

This work investigates the idea of using generative flow-
based models for performing interpretable and comprehensible
modeling of latent representations in the domain of affective
computing. We show that these models are able to transform
the image signals into clear, segregated clusters in the latent
space. Our results suggest the subjective nature of expression
giving insight into how expression clusters by subject facili-
tating accurate recognition. We also explore the applicability
of this work to perform supervised expression recognition
on a posed facial expression dataset (BU-EEG). Finally, we
detail potential use cases and broader impacts, to establish
the proposed method in real-world applications by addressing
some of the ethical and privacy concerns.
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