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People with autism spectrum disorder (ASD) display impairments in social interaction and communica- 

tion skills, as well as restricted interests and repetitive behaviors, which greatly affect daily life func- 

tioning. Current identification of ASD involves a lengthy process that requires an experienced clinician to 

assess multiple domains of functioning. Considering this, we propose a method for classifying multiple 

levels of risk of ASD using eye gaze and demographic feature descriptors such as a subject’s age and gen- 

der. We construct feature descriptors that incorporate the subject’s age and gender, as well as features 

based on eye gaze patterns. We also present an analysis of eye gaze patterns validating the use of the 

selected hand-crafted features. We assess the efficacy of our descriptors to classify ASD on a National 

Database for Autism Research dataset, using multiple classifiers including a random forest, C4.5 decision 

tree, PART, and a deep feedforward neural network. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

Autism Spectrum Disorder (ASD) is a neurodevelopmental dis-

order characterized by deficits in social interactions (e.g., making

appropriate eye contact, gestures, facial expressions), communica-

tion (e.g., reduced reciprocal conversation exchanges, poor use of

gestures), and the presence of restricted interests and repetitive

behaviors (e.g., rigid routines, stereotyped language, unusual be-

haviors) [41] . ASD is often considered a childhood disorder, yet it

persists through the life span and results in severe psychosocial

impairments. Among these impairments for example, is difficulty

forming close relationships, which can lead to social isolation and

bullying [25] . Early detection of ASD is critical to helping children

overcome such disorder-related impairments. An important social

interaction that develops as a part of infancy, is gaze-to-face. From

a neural and cognitive systems perspective, gaze-to-face plays a

critical role in creating social meaning as it acts rapidly to change

attention, and arouse and modulate responses (e.g., mimicry and

imitation) [19] . Children diagnosed with ASD tend to exhibit de-

lays in this critical social behavior [15] . The salient association be-

tween eye movements, cognitive processes and general cognitive

abilities makes the study of the relationship between eye gaze and

ASD significant [20] . 

Most diagnoses of ASD occur after or around 4 years of age [3] ,

which is long after the social behavior gaze-to-face develops. The

gold standard for ASD diagnosis involves a lengthy evaluation pro-
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ess that requires a certified professional to administer behavioral

bservation instruments in a clinical setting [43] . The lengthy eval-

ation coupled with the need for a specialist operating in a clin-

cal environment contributes toward delays in early identification,

s these resources are not universally available and tend to cluster

n urban areas [ 24 , 26 , 38 ]. 

In recent years, a burgeoning cache of complex computational

nd engineering methodologies have been applied to neurocogni-

ive research. One such technology, machine learning, has demon-

trated promise as a reliable tool to classify young children with

SD by analyzing eye gaze patterns. Given the heterogeneity of

SD symptoms, machine learning studies have demonstrated the

mportance of incorporating children across the autism spectrum

e.g., severe and milder presentations), as well as typically devel-

ping children, when finding deviations in eye gaze patterns [ 5 , 36 ].

n accurate algorithm that incorporates various factors like age

nd gender, as well as patterns in eye gaze behavior can make

easurements that may not be possible with the human eye, thus

roviding a more reliable screening tool to enhance diagnostic and

ntervention research in ASD. In doing so, we should account for

etails that regard the design and principles of the Autism Diag-

ostic Observation Schedule, Second Edition (ADOS-2 [25] ), a gold-

tandard ASD behavioral assessment, and the correct application

f machine learning, as well as the limitations of datasets [5] . It

s imperative to screen at-risk children (often identified by famil-

al history and presence of developmental delays) and potentially

iagnose ASD as early as possible, given that the largest treatment

ffects (e.g. intellectual, language, and adaptive functioning) have

een linked to early intervention [10] . In the impending sections,

https://doi.org/10.1016/j.patrec.2020.04.028
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e introduce the study of gaze and ASD as they apply to medi-

al and psychology literature, as well classifying ASD, using differ-

nt modalities (e.g. gaze, MRI) with computer vision and machine

earning. It is also worth noting some of the works fall under both

ategories. The following literature review is not meant to be ex-

austive but an introduction to the most related works. 

.1. Related medical and psychology works 

In medical and psychology literature, there is a wealth of ma-

erial related to the study of gaze and ASD. Frazier et al. [14] per-

ormed a meta-analysis on the differences in gaze for social and

onsocial information. They used 122 independent studies and

ompared 1155 characteristics such as eye-tracking methods, stim-

lus features, and regions of interest. They found a reliable pattern

f gaze abnormalities for individuals with ASD which suggested a

roblem with selecting socially relevant versus irrelevant informa-

ion. Helminen et al. [22] used heart rate deceleration to investi-

ate orienting response to direct versus averted gaze among 2–5-

ear-olds with low-functioning ASD. Their results suggest that chil-

ren with ASD lack the perceptual detection advantage of direct

aze, as well as fail to respond to the gaze with enhanced phys-

ological orienting. Pierce et al. [33] studied preferences for look-

ng at dynamic geometric images versus social images in children

ges 14–42 months. The study found that children with ASD spent

ignificantly more time looking at dynamic geometric images sug-

esting that what children look at is as important as where they

ook. Guillon et al. [17] looked at 20 preschoolers and their typi-

ally developing peers, while scanning over faces. When typically

eveloping children scan, they found that the left eye might be an

nchor; however, children who have ASD did not have this an-

hor. This study highlights multiple differences in gaze patterns

f children with ASD compared to typically developing (TD) chil-

ren. Previous studies have used eye tracking devices to measure

nd categorize eye gaze patterns in children with and without ASD.

asson et al. [40] discovered, when presented with arrays of social

nd non-social objects, the visual attention of children with ASD

as more circumscribed (fewer images were explored), more per-

everative (more time was spent on each image) and more detail-

riented (greater amount of fixation on details in images) than TD

hildren. Bekele et al. [4] found children with ASD focus more on

he forehead (an information irrelevant area) than on the mouth

information relevant) when compared to TD children in a study

f their response to facial expressions while looking at a computer-

enerated avatar in a virtual environment. 

.2. Related computer vision and machine learning works 

Recently, computer vision and machine learning techniques

ave been used to analyze eye contact and gaze in relation to po-

ential risk for ASD. Ye et al. [44] proposed detecting eye contact

ith glasses. An examiner wears point-of-view glasses to capture

ideo of a child’s gaze direction. In this solution, the examiner’s

oint of gaze is simultaneously captured from the glasses. In the

aptured videos the child’s face is detected and a feature set is ex-

racted which includes the location of the examiner’s gaze point

ith respect to the child’s eye center. A random forest was trained

or eye contact detection, with a precision of 80% and recall of

2%. Seminal work by Rehg et al. [37] was done in decoding the

ocial behavior of children, which focuses on activity recognition

f children including gaze detection. They detected gaze by using

n overhead Microsoft Kinect camera and a front facing camera to

nderstand the social interactions of 121 children in over 160 ses-

ions. This study used video, audio, physiological recordings, scor-

ng datasheets, and parent questionnaires to analyze social behav-

or. This study presented the first baseline analysis of decoding so-
ial behavior of children, which showed they can reliably predict

hild social data with multiple modalities. The research also re-

ulted in a new multimodal dyadic behavior dataset consisting of

dult-child social interactions. 

While the above listed computer vision and machine learning

orks have focused on social interactions, there are studies that

ook to analyze gaze for classification of ASD. One of the first works

o do this, from Alie et al. [1] , trained Markov Models to classify

hildren at 3 years of age with and without a diagnosis of ASD.

he study included 26 TD children and 6 with an ASD diagnosis. A

otal of 93.75% of the subjects were successfully classified. Puisol

t al. [34] looked at classifying developmental disorders based on

ye-movements of subjects ages 12 to 28-years-old. The study fo-

used on subjects with a Fragile X Syndrome diagnosis, which is

 common genetic cause of ASD [18] . Using temporal gaze fea-

ures and a recurrent neural network, they achieved a top preci-

ion of 0.91. Liu et al. [29] identified children with ASD by eval-

ating their face scanning patterns. This is accomplished through

ye movement patterns. They measured the frequency distribution

f the gaze points without temporal information. Using K-means,

hey quantized these coordinates from 29 children with ASD

nd 29 control children. Using a leave-one-out cross-validation

trategy, they achieved an average accuracy of approximately

8%. 

Along with gaze, recent works have also successfully used other

odalities to classify ASD in children and adults. Kong et al.

28] used subject dependent deep neural networks (DNN) trained

n MRI images to learn features based on brain connectivity. Using

 subset of images from the Autism Brain Imaging Data Exchange

 [2] , they evaluated 182 subjects (78 with ASD, 104 without), and

reated a separate DNN for each one. They showed encouraging re-

ults on this data, achieving an accuracy of 90.39%. Using a lager

et of data from the same data exchange, Heinsfeld et al. [21] in-

estigated detecting ASD from 505 subjects with ASD and 530 con-

rol subjects. Similar to Kong et al., they also used deep neural

etworks to classify the subjects with ASD. On this larger set of

ata, they achieved an accuracy of 70%, also showing that the DNN

an outperform a support vector machine (SVM) and random for-

st, with those classifiers achieving an accuracy of 65% and 63%,

espectively. 

Using full-body, non-verbal data, Georgescu et al. [16] detected

SD in adult subjects. They manually selected regions of inter-

st (ROI) that included the head in one and rest of body in the

ther. Changes in greyscale in these ROIs were used to train a

upport vector machine on 58 subjects (29 with ASD, 29 control).

his approach achieved an accuracy of 75.9%, with a sensitivity of

6.3% (one subject with ASD was incorrectly classified). Nakai et al.

30] investigated how machine learning compares to human ex-

erts at classifying ASD, in children, using voice analysis. For the

achine learning, they calculated 24 features from the fundamen-

al frequency representing pitch. Using these features, they trained

n SVM to learn the voice patterns of children with and with-

ut ASD. Their proposed approach showed a higher accuracy (F-

easure) compared to human experts at classifying children with

SD using voice analysis. 

Another interesting study involves using machine learning

long with items (features) from the Social Responsiveness Scale

SRS). Duda et al. [9] classified subjects with ASD compared to

hose with attention deficit hyperactivity disorder (ADHD) using

his approach. They used a crowdsourcing technique, to get extra

ata, to help their model generalize to unseen subjects. Training

achine learning classifiers on SRS features they achieved an Area

nder the Curve (AUC) of > 0.90 (classifying ASD vs. ADHD). They

nvestigated multiple machine learning classifiers that include sup-

ort vector classification, logistic regression, and linear discrimi-

ant analysis. 
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Table 1 

Important elements in ETS-E dataset. 

Element Name Data Type Description 

Subject ID String ID of subject 

Age Integer Age in months 

Phenotype String Diagnosis 

Gaze point (x, y) Gaze coordinate 

Fixation duration Integer Length of fixation 

Gender String Gender of subject 

Stimuli name String Name of stimuli (image/video) 
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Table 2 

Age distribution (in 

months), of ETS-E dataset. 

ASD Risk Age Range 

Low 3–12 

Medium 13–33 

High 2–12 

ASD 64–132 

Fig. 1. Gaze maps of subjects. Top left: ASD; Top right: high risk; Bottom left: low 

risk; Bottom right: medium risk. 

Fig. 2. 3 x 3 grid, of ETS-E subject data, for analyzing gaze patterns. Top row: ASD 

(left side) and high risk (right side); Bottom row: low risk (left side) and medium 

(right side). 
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1.3. Motivation 

Although these studies provide a great deal of information re-

garding classification of ASD, relatively few focus on automatically

classifying ASD based on observed gaze patterns of subjects with

multiple levels of risk for ASD (low, medium, high, and ASD). Most

of the studies concentrate on differences between those diagnosed

with ASD and their typically developing peers. In this study, we

extend our proposed method for ASD classification using eye gaze

and subject demographic information [7] . Raw gaze, and feature

descriptors, created using subject’s age, gender, and eye gaze data

were tested on four different classifiers; random forest [6] , C4.5

decision tree [35] , PART [13] , and a deep feedforward neural net-

work. Our proposed method resulted in an ASD classification rate

of 93.45% on the National Database for Autism Research (NDAR)

[31] . We also present an analysis of eye gaze patterns validating

the use of the selected hand-crafted features, as well as a compar-

ison of hand-crafted vs. deep features for classification of ASD risk.

Our contributions be summarized as follows: 

1) Two sets of gaze-based feature descriptors along with demo-

graphic information such as age and gender are proposed for

classification of ASD risk. One set is derived from raw eye gaze

points (x, y), and the second consists of hand-crafted features

(e.g. gaze velocity). 

2) Analysis of eye gaze patterns is provided across low, medium,

and high risk, as well as ASD. The analysis is conducted across

age ranges that include 2–12, 13–33, and 64–132 months. 

3) Feature descriptors (e.g. age) are analyzed to determine which

are strongest for classification of ASD risk. 

2. Dataset 

The National Database for Autism Research (NDAR) [31] is a

website that serves as the primary entry point for the National

Institute of Mental Health Data Archive (NDA), which shares de-

identified human subjects with the scientific community. The NDA

also gives researchers access to tools, methods and forms of analy-

sis for scientific discovery. For our experiments, we use the “Eye

Tracking Subject-Experiment” (ETS-E) dataset, which is available

for download through the NDA. The ETS-E dataset contains gaze

information from subjects that have been classified with various

levels of risk for ASD which include low, medium, and high risk,

as well as an ASD diagnosis. These subjects watched images and

videos on a computer screen. The dataset contains a total of 41

subjects diagnosed with a low risk, 122 subjects diagnosed with

a medium risk, 49 subjects diagnosed with a high risk, and 17

subjects with a diagnosis of ASD, for a total of 229 subjects.

The dataset also includes demographic information such as age (2

months to 11 years) and gender of the subjects ( Table 1 ). 

As can be seen in Table 2 , there is some overlap in age among

low and high-risk subjects, however, medium and ASD classes

share no overlap in age with any other risk class. Considering this,

we investigate the impact of age on the classification of ASD risk,

by removing it as a feature ( Section 4.2 ). 
Through observations of the subject gaze data (x and y coordi-

ates), from each of the different risk levels in the ETS-E dataset,

t can be seen that the focus of the subject decreases as the risk

oves from low to high, and to an ASD diagnosis ( Fig. 1 ). These

bservations are a motivation for the selected, hand-crafted fea-

ures used in this work. Details on the hand-crafted features are

iven in the next section along with further analysis validating

heir use. 

. Hand-crafted feature descriptors 

Given eye gaze data, to classify risk for ASD, we hypothesized

hat important hand-crafted features could be created based on

egmentation of the gaze points into a 3 x 3 grid ( Fig. 2 ). We chose

o use a 3 x 3 grid as this corresponds to the nine possible directions

f eye gaze. Tran et al. [42] used a 3 x 3 grid, based on the nine pos-

ible directions of eye gaze, around the gaze points for analyzing

ffective communication domains that include interrogation-based

eception and communication skills. We are motivated by this to

se a 3 x 3 grid for analyzing gaze points for each class of ASD risk

low, medium, high, and ASD). 
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Fig. 3. Number of subject fixations per class. Best viewed in color (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.). 

Fig. 4. Number of times subjects looked offscreen per class. Best viewed in color (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) . 
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.1. Hand-crafted features 

To the best of our knowledge, the NDAR ETS-E dataset is the

nly one available that contains gaze and demographic informa-

ion about subjects that have been diagnosed with levels of ASD

isk. Considering this, the following hand-crafted features and sub-

equent analysis ( Section 3.2 ) is currently specific only to this

ataset. Due to this lack of other datasets, it is difficult to test

he generalizability of the proposed hand-crafted features to other

ata/subjects. However, there is supporting evidence in medical

orks [ 8 , 39 ] that justify the use of these hand-crafted features

nd their ability to generalize to other datasets. Motivated by this,

e investigate the use of two sets of features. The first includes

and-crafted features plus the raw gaze data, the second includes

and-crafted features from patterns in the gaze. As can be seen

n Table 2 , each risk is associated with a specific age range that

s relatively small (e.g. low risk is 3–12 months). Due to this, the

onducted evaluations have a fair distribution of age ranges, suggest-

ng that the results are based on the gaze data and not age ( i.e. the

ifferences in age for each risk level will not impact the distributions

rom Figs. 3 , 4 and Tables 4 , 5 ). 

Features based on raw gaze. These proposed hand-crafted fea-

ures use the ETS-E set and combine raw eye gaze data, as well

s demographic information to classify ASD. We propose the use

f four different feature descriptors that include (1) raw eye gaze

oints (x, y); (2) average fixation duration; (3) age; and (4) gen-

er. Eye gaze information can detail important features that can be

sed to classify ASD [11] . The raw eye gaze points contain the (x,

) coordinates indicating where the gaze of each test subject was
ocused. The number of gaze points per subject is not consistent.

onsidering this, we used the first 2580 gaze points for each sub-

ect, which corresponds to 43 s of data (at 60 fps) for each subject.

his approach ensures the feature vectors are the same length and

e are analyzing the same time segment for each subject (i.e. the

rst 43 s). It is important to note, that while Fig. 1 plots the gaze

aps without visually considering temporal information, when us-

ng the raw gaze features for classification, temporal information is

onsidered as they are used sequentially in order (i.e. time) based

n the subject watching a video. 

Along with the raw eye gaze data, the NDAR provides eye gaze

xation information. Average fixation was calculated by dividing

he total length of fixations over the total number of fixations per

ubject. Average fixation length was used as subjects with ASD

end to fixate on images for a longer amount of time [40] . For ex-

mple, one test subject classified with a medium risk had an av-

rage fixation length of approximately 0.6 s, while another subject

t high risk had an average fixation length of 0.8 s. The last two

eature descriptors are age and gender. 

Features based on gaze patterns. Motivated by the visual dif-

erences between each class (low, medium, high, ASD as seen in

ig. 1 ), we construct a 21-dimension feature vector, based on the

rid-based approach ( Fig. 2 ), that includes features from gaze pat-

erns and demographic information (i.e. age). The grid-based ap-

roach allows us to extract more fine-grained information about

here the subjects are looking, how often they look there, and

heir gaze velocity, where 

 elocity = 

( √ 

( x 1 − x 2 ) 
2 + ( y 1 − y 2 ) 

2 

t 

) 

. (1) 

Here, t = time , ( x 1 , y 1 ) is the gaze point at time t 1 and ( x 2 , y 2 )

s the gaze point at time t 2 . We hypothesized that this informa-

ion would have key features that can be used to classify ASD risk.

onsidering this, using each cell of the grid, we took the average

elocity, and the frequency of gaze (total number of gaze points in

ach cell) of all cells (9 + 9 features) and inserted them into our

eature vector. We also used the total fixations (over all cells – 1

eature), the number of times the subject was looking off screen

out of monitor – 1 feature), and age of subject (1 feature). We

ake each of these as features to classify ASD risk. These features

ive us our 21-dimension feature vector (9 + 9 + 1 + 1 + 1 = 21),

hich allow for accurate classification of ASD risk. To validate the

se of these hand-crafted features, we next detail an analysis of

he gaze data using the 3 x 3 grid-based approach. 

.2. Validation of hand-crafted features 

Through the empirical study of the gaze maps for each of the

ifferent classifications in the ETS-E dataset, we have observed no-

iceable gaze patterns that subjects follow ( Fig. 1 ). The observed

atterns contain important features that can be used to classify

ubject’s risk for ASD. From these observations we conducted in-

epth analyses of the patterns. This analysis is presented as vali-

ation for the hand-crafted features detailed in Section 3.1 . When

nalyzing risk for ASD between low, medium, high, and ASD we

an study where the subjects are focusing when watching videos.

o study these focus areas, we created a 3 x 3 grid around each of

he gaze maps. Each cell of this grid corresponds to a potential

rea of interest on the screen where the subjects focus their atten-

ion. From the grids we can perform a more in-depth analysis of

he gaze maps by focusing on smaller regions. As can be seen in

ig. 2 , the focus of the low risk sample (bottom left) is mainly in

he middle cell (middle of screen), while medium, high, and ASD

re focused in other regions, and in some cases more than one re-

ion. 
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Table 3 

Average age in months (with standard deviation), average number of 

gaze points that were not focused on the screen, and average number 

of fixations for each risk class. 

Class Age (SD) Out of Monitor Fixations 

Low 6.3 (3.3) 7140.4 415.7 

Med 22.2 (4.3) 1319.8 75.8 

High 6.1 (3.1) 8048.3 425.6 

ASD 97.6 (21.3) 6407.6 283.9 
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When analyzing gaze patterns, there are important features that

we want to consider. A core feature of ASD is diminished gaze fix-

ation [8] , and it has been found that saccadic velocity was dimin-

ished in children with ASD or autistic-like conditions [39] . Based

on these two important aspects of ASD, we analyzed the following

gaze patterns: (1) fixation of subjects; (2) frequency of gaze for

each cell of our grid (how often each subject looked at a cell); (3)

average velocity of the subject’s gaze per cell; and (4) the number

of times the subject was not looking at the screen, which was de-

termined by verifying if the gaze was in the bounds of the screen

size used. From these patterns we can see how often the different

classes look at certain regions of the screen (or if they are looking

off screen), if they change their fixation on the screen, and how

their velocity changes per class of diagnosis. Fig. 3 shows the num-

ber of fixations per class, and Fig. 4 shows how often each class

was looking off screen. Tables 4 and 5 illustrate the average gaze

velocities and frequencies for each cell respectively. Table 3 shows

the average subject age, frequency of looking off-screen, and the

number of fixations. 

As can be seen in Table 4 , the velocities change with each class.

Low has the smallest average velocity, across all cells, at 0.7 and

a standard deviation of 0.3. This shows that subjects with a low

risk for ASD are slowly scanning the screen with little variation

(i.e. they are following the video closely). Those subjects with an

ASD diagnosis have the highest average velocity at 1.1 and a higher

standard deviation of 0.5. This suggests that subjects with an ASD

diagnosis more rapidly scanned the screen, and this rapid scanning

was not consistent (e.g. they make quick movements with their

eyes to different parts of the screen). An interesting class to look at

is medium risk as there are some outliers that effect that analysis.

Most of the velocities for all classes are less than 4; however, in

the medium class there are large outliers in the bottom 3 cells of

the grid. These velocities are 7.7 in the bottom left cell, 5.9 in the

bottom middle cell, and 14.5 in the bottom right cell. These out-

liers have a large effect on the overall average velocity of 0.9 and

standard deviation of 0.6 (see Table 4 ). Due to these outliers the

class has the largest standard deviation and its average velocity is

higher than both the low and high classes. A possible explanation

for this is that a small subset of subjects in medium class are ex-

hibiting patterns like ASD (e.g. eyes quickly darting to cell location

on screen). 

There are also interesting gaze frequencies ( Table 5 ), for each of

the classes in the specific cell of the grid. Most of the time was

spent looking at the center of the screen (middle cell), the differ-

ences lie in the frequencies of the other cells. The subjects in the
Table 4 

Average gaze velocities for each of the grid cell locations for low, medium, high, and AS

the standard deviation respectively. 

Class 

Bottom Left 

Velocity 

Middle Left 

Velocity 

Top Left 

Velocity 

Bottom Mid 

Velocity 

Middle Mid 

Velocity 

Top Mid

Velocity

Low 0.9 0.8 0.1 0.7 0.7 0.7 

Med 1.1 0.7 −0.4 1.5 1.1 −0.03 

High 0.9 0.9 0.4 0.7 0.9 0.5 

ASD 1.8 1.6 0.1 1.4 1 1.2 
ow class exhibited the smallest standard deviation of frequency

cross all cells, at 37.1. The average gaze frequency for the center

f the screen was 120.6 with the bottom middle and top left cells

aving the second and third highest frequencies, respectively. The

ow standard deviation is showing consistency across all cells. This

uggests that the low-class scans across the screen in a consistent

anner, also supported by the consistent velocity across all cells

or this class. Those subjects with an ASD diagnosis have the high-

st standard deviation of frequency gaze with 90.8, which when

ombined with the high average velocity shows subjects that make

ast “jumps” in gaze from the center of the screen to another ran-

om cell, and back to the center again. 

We also analyzed how many times the subject was not focused

n the screen and the total number of average fixations ( Table 3 ).

ow, high, and ASD classes exhibits similar characteristics with the

umber of times they were not focused on the screen, however,

SD subjects had noticeably different fixations with an average of

83.9 fixations versus the 415.7 and 425.6 fixations for low and

igh respectively. Again, subjects with a diagnosis of medium risk

howed a noticeable difference in patterns compared to the other

lasses. Medium had an average of 1319.8 gaze points not focused

n the screen, and only 75.8 average fixations. While these outliers

xist, in the medium class, we will show in the next section that

hey do not negatively impact classification of ASD risk. 

By analyzing gaze points for ASD risk we have observed pat-

erns that can be useful for classifying risk of ASD. A summary of

hese observed patterns is detailed below. 

1) Average gaze velocity, generally, increases as subjects move

from low to high risk, and to an ASD diagnosis. 

2) Average gaze velocity across the viewing screen is more consis-

tent in classes with less risk of ASD compared to those with a

diagnosis of ASD. 

3) Subjects with a diagnosis of ASD display patterns of rapid eye

movement across the screen, while lower risk subjects consis-

tently scan the screen. 

4) The frequency of gaze points changes from class to class, as

well as where the subjects focus. This, along with velocity, is

consistent with previous literature which has shown that where

children are looking and at what, matters [33] . 

. ASD classification 

.1. Classification techniques 

Based on the hand-crafted features from the raw gaze data, and

he gaze patterns detailed in Section 3 , we trained a random forest,

4.5 and PART classifiers, and a deep feedforward neural network.

or our proposed classification method, we used 10-fold cross val-

dation for training and testing. Justification and details on each of

he classifiers is given below. 

Random forests. A random forest [6] is a collection of ran-

om classification trees where the mean classification of all trees

s taken as the output. They have been used in a wide variety of

lassification tasks such as real-time hand gesture recognition [45] ,
D risk classes. The last 2 columns show the average velocity across all cells, and 

 

 

Bottom Right 

Velocity 

Middle Right 

Velocity 

Top Right 

Velocity 

Across All 

Cells STDEV 

1.2 0.9 0.5 0.7 0.3 

2.1 0.8 −0.7 0.9 0.6 

1 0.8 0.7 0.8 0.2 

1.5 0.6 0.9 1.1 0.5 
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Table 5 

Average gaze frequencies for each of the grid cell locations for low, medium, high, and ASD risk classes. The last 2 columns show the average frequency across all cells, 

and the standard deviation respectively. 

Class 

Bottom Left 

Freq 

Middle Left 

Freq 

Top Left 

Freq 

Bottom Mid 

Freq 

Middle Mid 

Freq 

Top Mid 

Freq 

Bottom 

Right Freq 

Middle 

Right Freq 

Top Right 

Freq 

Across All 

Cells STDEV 

Low 8.8 22.5 48.1 55.8 120.6 15 16.5 5 10.6 33.7 37.1 

Med 5.7 37.4 24.1 32.2 230.6 4.4 0.7 39.1 2.8 41.9 72.4 

High 10.7 16.8 37.6 59.8 155.2 37.9 6.2 20.5 2.9 38.6 47.4 

ASD 2.5 9.6 14.6 32.5 283.8 19.4 3.7 6.5 12.6 42.8 90.8 

Table 6 

Raw-gaze ASD classification accuracies. 

Random 

Forest PART C4.5 

Neural 

Network 

Classification Accuracy 86.43% 90.83% 90.83% 85.18% 
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Table 7 

Confusion matrix using raw gaze-based features 

with the PART and C4.5 classifiers. 

low medium high ASD 

Low 32 0 9 0 

Medium 0 121 0 1 

High 11 0 38 0 

ASD 0 0 0 17 

Table 8 

Confusion matrix using raw gaze-based features 

with the random forest classifier. 

low medium high ASD 

Low 29 5 7 0 

Medium 0 122 0 0 

High 9 7 33 0 

ASD 0 3 0 14 

Table 9 

Confusion matrix using raw gaze-based features 

with a deep feedforward neural network. 

low medium high ASD 

Low 31 3 7 0 

medium 0 122 0 0 

high 3 7 39 0 

ASD 0 2 1 14 

Table 10 

Gaze pattern ASD classification accuracies. 

Random 

Forest PART C4.5 

Neural 

Network 

Classification Accuracy 93.45% 91.70% 88.20% 92.59% 
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nd head pose estimation [12] . They can classify diverse types of

ata making them a good fit for classifying ASD risk. 

C4.5. C4.5 [35] is a statistical classifier that builds decision trees

ased on information entropy. At each node of the tree, the al-

orithm looks to split the subsets based on the most information

ain. From all the available attributes, the one that has the high-

st information gain makes the decision. The algorithm then re-

ursively does this for each of the available subsets that are left.

he C4.5 algorithm can handle both discrete and continuous data

aking them a good fit for classifying ASD risk. 

PART. PART [13] makes use of partial decision trees and a sep-

rate and conquer strategy for rule induction. For PART to make

 rule it builds a pruned decision tree with the current set of in-

tances, which have not been removed, and the leaf that has the

argest amount of coverage is turned into a rule. The rest of the

ree is then discarded. In doing this, it can avoid over-pruning mak-

ng them a good fit for classifying ASD risk. 

Deep feedforward neural network. There are many variants of

eep neural networks such as convolutional neural networks and

ecurrent neural networks. For this study, we use a deep feedfor-

ard neural network to train and classify risk of ASD. They use

idden layers between the inputs and outputs. The weights on in-

oming connections of these hidden layers are adapted to learn

eatures to predict the correct output of input data. These networks

re a natural fit for our experiments as they have successfully been

sed on a variety of classification tasks [23] . 

Our network has an initial input layer with the same number

f neurons as the input vector, one hidden layer where the num-

er of neurons = � (number of neurons in input layer + number of

eurons in output layer)/2 � , and the final output layer output layer

here the number of neurons = 4 (the number of classes to pre-

ict – Low, Medium, High, ASD). The softmax activation function

as used, and the adamax optimizer [27] with a learning rate of

.001. All features used with network were normalized by remov-

ng the mean and scaling to unit variance. 

.2. Results 

Hand-crafted features from raw gaze. Using raw gaze-based fea-

ures for training data, a max classification rate of 90.83% from

oth the PART and C4.5 classifiers was achieved. Table 6 shows the

ccuracies for each of the tested classifiers, and Tables 7–9 show

he confusion matrices for each. 

For each of the classifiers tested, medium (out of low, medium,

nd high risk) has the highest classification rate, with only one

isclassification among all the tests. This can partially be at-

ributed to the relatively large amount of data available for

edium (122 compared to 41 low, 49 high, and 17 ASD). For PART
nd C4.5, the ASD diagnosis was successfully classified 100% of the

ime, with random forest and the deep network successfully clas-

ifying 82% of the ASD data. These results are encouraging as they

how that gaze can be used as a marker for diagnosis of ASD [3] .

t is also important to note that while a deep feedforward neural

etwork had a lower accuracy these results are still encouraging.

eep neural networks can require a large amount of data to train,

here we only used 229 instances of the gaze-based features to

rain. 

Hand-crafted features from gaze patterns. Using features de-

ived from gaze patterns for training data, a max classification rate

f 93.45% using a random forest. Table 10 shows the accuracies for

ach tested classifier. As we also tested hand-crafted features in a

eep network, we make note that this is not common compared to

sing raw gaze data. This was done to directly compare raw gaze

s. gaze patterns. See Tables 11–14 for the confusion matrices of

he four tested classifiers. 

Cases where a misclassification occurs in an instance such as

igh being misclassified as medium can, at least partially, be at-

ributed to the classes displaying similar features. The interesting

ases of the misclassified risks come from the classes that should
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Table 11 

Confusion matrix for ASD risk classification, based on 21-dimension feature 

vector and random forest classifier. 

Low medium High ASD 

Low 35 1 5 0 

Medium 0 122 0 0 

High 5 1 41 2 

ASD 0 1 0 16 

Table 12 

Confusion matrix for ASD risk classification, based on 21-dimension feature 

vector and deep feedforward neural network. 

Low medium High ASD 

Low 35 0 6 0 

Medium 1 120 0 1 

High 7 0 42 0 

ASD 0 1 0 16 

Table 13 

Confusion matrix for ASD risk classification, based on 21-dimension feature 

vector and PART. 

Low medium High ASD 

Low 33 0 8 0 

Medium 0 121 0 1 

High 10 0 39 0 

ASD 0 0 0 17 

Table 14 

Confusion matrix for ASD risk classification, based on 21-dimension feature 

vector and C4.5. 

Low medium High ASD 

Low 30 0 11 0 

Medium 0 121 0 1 

High 15 0 34 0 

ASD 0 0 0 17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 15 

Correlation between features and classification 

output. Close to 1 signifies a high correlation. 

Correlation Feature 

0.6816 Fixation 

0.5988 Middle Mid Frequency 

0.5681 Bottom Mid Frequency 

0.5613 Out of Monitor 

0.5107 Top Left Frequency 

0.4431 Top Mid Frequency 

0.3018 Top Right Velocity 

0.2784 Top Mid Velocity 

0.2712 Top Right Frequency 

0.2618 Bottom Left Frequency 

0.2595 Bottom Right Frequency 

0.2319 Left Middle Frequency 

0.209 Middle Mid Velocity 

0.1948 Age 

0.1884 Middle Right Frequency 

0.1749 Bottom Mid Velocity 

0.0873 Top Left Velocity 

0.0837 Middle Right Velocity 

0.0758 Middle Left Velocity 

0.05 Bottom Left Velocity 

0.019 Bottom Right Velocity 

Table 16 

Error statistics for ASD classification based on proposed method 

and 9-dimension feature vector. 

Statistic Statistic Rate 

9 dimensions 21 dimensions 

Kappa statistic 0.9586 0.8962 

Mean absolute error 0.0665 0.072 

Root mean squared error 0.1536 0.1578 

Relative absolute error 20.9483% 22.6602% 

Root relative squared error 38.6085% 39.6602 

Table 17 

Classification results on both raw gaze and gaze pattern features when age is 

removed as a feature. 

Random Forest PART C4.5 Neural Network 

Raw Gaze 86.03% 80.35% 79.04% 86.92% 

Gaze Patterns 92.58% 88.21% 87.77% 91.70% 
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be far apart (e.g. high vs. low). One possible explanation for this is

some of the features used for classification are not well separated

by the classes. We study this in more detail, by not only looking

at the classification rate, but also by considering which features

are most important. To study this, we calculate the correlation be-

tween each attribute and the classification output using the Pear-

son correlation coefficient [32] . By looking at the correlation be-

tween these samples (each attribute/feature and the output), we

can rank the features based on highest correlation (where 1 is the

highest correlation and closer to 0 signifies a low correlation). This

ranking can give us insight into how to reduce the dimensional-

ity of our feature vector further. As can be seem in Table 15 , fix-

ation has the highest correlation with 0.6816, which is consistent

with findings that problems with gaze fixations are a core feature

of ASD [8] . See Table 16 for error statistics. 

Along with overall classification rates, we also wanted to know

which feature gave us the lowest rate. In other words, can we de-

termine features not suitable for classification of ASD risk. For the

ETS-E dataset this feature is the frequency of gaze in the bottom

left cell. When this feature alone is used for classifying ASD risk, it

results in 62.0087% of the instances being correctly classified (142

of 229). It is also interesting to look at the worst case, as this can

give us insight to what is (or in this case is not) happening on

screen. The mean frequency of gaze in this cell is 57.127 which im-

plies that nothing of importance was happening on the screen in

this cell and the gaze from all classes was not drawn to this region

of interest. This cell also has a higher max velocity of gaze than

many of the other cells. One explanation for this is when subjects
id look at this cell, they quickly looked to and focused on another

egion of interest. 

Impact of age on classification results. As can be seen in

able 2 , the ETS-E dataset is imbalanced in terms of age. While low

nd high risk have similar age ranges, the medium and ASD classes

o not overlap with any other age range. Due to this, we can’t di-

ectly perform classification on individual age ranges as the classes

ould be the same for specific age ranges (e.g. > = 64 months

ould all have class label of ASD). Considering this, it is impor-

ant to verify if age or the gaze, is causing the classification results

hat are shown with both the features from raw gaze, and the gaze

atterns. To facilitate these experiments, we ran the same machine

earning classifiers (e.g. random forest) on the features from raw

aze and patterns, however, we removed age as a feature in both

f the sets. As can be seen in Table 17 , age is a factor in classifica-

ion, however, the gaze-based features, excluding age, are still able

o classify ASD risk. When age was removed as a feature, across the

 tested classifiers, the average classification accuracy decreased by

.23% and 1.42% for the raw gaze and gaze pattern feature sets, re-

pectively. These results suggest that age is a factor, although the

aze-based features are still able to accurately classify risk for ASD.

t is also important to note that when age was removed as a fea-

ure in the raw gaze data, the feed-forward neural network accu-

acy increased by 1.74%. Overall, these results suggest that the fea-
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ures from gaze patterns are a more robust solution to classifying

isk of ASD from gaze, as the overall decrease in accuracy was less

ompared to the raw gaze feature set. 

. Discussion 

In this paper we have proposed a new method for classifica-

ion of ASD risk based on hand-crafted features and raw gaze data.

his work has the potential to aid medical practitioners in early

iagnosis of ASD. To facilitate this classification, we have inves-

igated the potential use of four different machine learning clas-

ifiers (PART, C4.5, random forest, and a deep feedforward neural

etwork). We validated the use of these hand-crafted features by

howing that low, medium, high, and ASD classes display different

atterns that can be used for classification of ASD risk. Our analysis

eflects the studies conducted in medical and psychology literature

hich show gaze fixation being important as well as where and at

hat the subject is looking, further validating their use. 

We have shown that while age is an important factor in clas-

ifying risk of ASD, in the ETS-E dataset, the proposed gaze-based

eatures can still accurately classify risk when age is not included

s a feature. Using raw gaze points, we achieved a max classi-

cation accuracy of 90.83% using both PART and C4.5 classifiers.

hen age was removed as a feature, the max accuracy decreased

o 86.03%, however, this time with a random forest. Using features

rom gaze patterns we achieved a max classification accuracy of

3.45% and 92.58%, using a random forest, with and without age as

 feature, respectively. These results suggest that hand-crafted fea-

ures may have more discriminative power to classify risk of ASD

ompared to using raw gaze points. It is interesting to note that

edium and ASD classes were successfully classified 100% of the

ime, with at least one machine learning approach, using both raw

aze and gaze patterns, however, low and high each had instances

hat were misclassified as the other. These inaccuracies require fur-

her investigation, and some interesting questions have developed

rom these observations such as: Do certain classes display charac-

eristics of other classes (e.g. are there instances in the high class

here the subject focuses in a similar manner as low)? If so, can

ore advanced features be used to accurately split these classes?

e did not look at how age affects gaze (and class distribution)

ver time. This leaves the question: Will a subject’s gaze change

ver time, ultimately classifying them differently (i.e. medium class

oday to high class in a years’ time)? This question could lead to

trong gaze patterns that can more accurately classify, and ulti-

ately predict risk of ASD. 

To the best of our knowledge the database used in this study is

he only publicly available gaze database for subjects with ASD and

ltimately, we want to develop a general set of features that can-

ot only be used to classify risk, but more importantly be used to

redict ASD risk. From this work, we are especially encouraged by

he results of a deep feedforward neural network. Considering this,

e will collect a large corpus of multimodal data for classifying

nd predicting risk of ASD. This corpus of data will include gaze,

acial affect, and sound collected from children up to 36 months of

ge (i.e. early diagnosis). 
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