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Abstract 
This paper presents a face recognition study that implicitly 

utilizes the 3D information in 2D video sequences through 
multi-sample fusion. The approach is based on the hypothesis 
that continuous and coherent intensity variations in video 
frames caused by a rotating head can provide information 
similar to that of explicit shapes or range images. The fusion was 
done on the image level to prevent information loss. 
Experiments were carried out using a data set of over 100 
subjects and promising results have been obtained: (1) under 
regular indoor lighting conditions, rank one recognition rate 
increased from 91% using a single frame to 100% using 7-frame 
fusion; (2) under strong shadow conditions, rank one 
recognition rate increased from 63% using a single frame to 
85% using 7-frame fusion. 

I. INTRODUCTION 
3D face recognition has received much attention recently 

in the biometrics research community, because 3D faces are 
considered to be less affected by the illumination and pose 
variations that often plague the 2D image-based approaches. 
Almost all studies have shown improvements in recognition 
accuracy when 2D and 3D faces were combined. However, as 
pointed out by Bowyer et al [1] and Kakadiaris et al [2], the 
use of 3D shapes, especially range images, has a few 
limitations: (1) current sensors have limited operation ranges 
(< 2m); (2) 3D data require much more storage space and 
long processing time; (3) acquisition is often not fully 
automated and may need user intervention. It is unlikely that 
those technical issues will be completely resolved in the near 
future. Therefore, there is a strong interest to explore other 
methods or sources that can provide 3D information that is 
equivalent or complementary to that of range images. 

In this paper, we propose a method that utilizes a video 
sequence in which a subject gradually rotated his/her head 
from the frontal view to the profile view. Our hypothesis is 
that the 3D geometry of a rotating face should be embedded 
in the continuous intensity changes of an image stream, and 
therefore can be harnessed by the recognition algorithm 
without the need of an explicit 3D face model. Multiple video 
frames that capture the face at different pose angles can be 

combined to provide a more reliable and comprehensive 3D 
representation of the face than any single view image. The 
proposed method has several advantages: 
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1) If the video sequences acquired by a regular or high 

definition camcorder can provide quality 3D data for 
face recognition, some of the constraints posed by 3D 
sensors can be relieved. For example, an optical 
camcorder has a much wider operation range and can 
record videos in real time. Therefore, this method has the 
potential to be deployed in realistic settings such as 
access control, security checking and video surveillance.  

2) Since the 3D information of a face is implicitly inferred 
by multi-frame fusion, the high computational cost of 
explicit 3D modeling (whether using a surface mesh or a 
solid mesh) can be avoided. 

3) Not all frames in a rotating head video will be used (the 
number of frames can reach a few hundreds in a rotation 
sequence). Fusion of a few selected frames often suffices 
the need of face recognition. This gives us the flexibility 
to perform fusion either on the image or score level. 

4) More importantly, a video sequence of a face with 
different poses might help alleviate the adverse effect of 
lighting changes on recognition accuracy. For instance, a 
light source can cast shadows on a face, but at the same 
time, it also reveals the 3D curvatures of the face by 
creating sharp intensity contrasts (such as silhouette).  

II. RELATED WORKS 
A literature survey with in-depth discussions of the current 

developments in 3D methods can be found in [1]. Zhao et al 
[3] presented a more extensive survey of the existing methods 
in face recognition. In this section, we give a brief review of 
the techniques that are most relevant to our approach. 

One motivation of using videos of rotating heads to 
facilitate face recognition is that, a few recent studies have 
demonstrated that the multi-sample approach can achieve a 
performance comparable to that of the multi-modal approach. 
Using a data set of varying facial expressions and lighting 
conditions, Bowyer et al [4] reported an improvement in  rank 
one recognition rate from 96.1% with two frames per subject 
to 100% with four frames per subject. In another study, 
Thomas et al [5] observed that the recognition rate generally 
increases as the number of frames per subject increases, 
regardless of the type of camera being used. They also found 
that the optimal number of frames per subject is between 12 
and 18, given the particular data sets used. However, as noted 



 
 

 

TABLE 1 
 DATA COLLECTIONS AND LIGHTING CONDITIONS in [4], “The use of multiple intensity images is of value only if 

there is some variation between the individual images of a 
person. And very little is known about how to build the right 
degree of variation into a multi-sample approach”. This study 
is an attempt to address certain aspects of the issue raised 
above. Although our approach is similar to [4,5], there are 
significant differences: (1) we use videos of rotating heads 
that show continuous pose variations; (2) videos have strong 
shadows which present a severe challenge to the recognition 
algorithm; (3) fusion is performed on the image level. 

A large amount of research efforts have been dedicated to 
video-based face recognition because of the rich temporal 
information contained in videos. In the very early work [6], 
the use of a 3D model has been considered important for both 
tracking and recognition purposes. Various models have been 
proposed, from geometrical models to more sophisticated 
deformable models, morphable models and statistical models 
[7,8,9,10]. Certain 3D models (meshes, point clouds and 
depth images) can be directly used for recognition through 
either registration minimization or principle component 
analysis. More frequently, 3D models are used to transform 
an input 2D image by rendering it so that the face in the 
resulting image has the desired pose, illumination and 
expression. The drawbacks of using an explicit 3D model are: 
(1) the accuracy of a reconstructed 3D shape via structure 
from motion may not be adequate for recognition; (2) the 
computational cost involved in shape rendering, illumination 
simulation and deformation modeling is high.   

Efforts have been made to extract grey level cues (shading, 
profile curves and silhouette) to aid the 3D model based 
recognition [11], because intensity variation is often related 
to an object’s shape and its surface reflectance properties, a 
fact that has been explored in the well known “shape from 
shading” scheme. A video sequence of a rotating head should 
contain abundant information about its 3D geometry that, in 
theory, can be utilized either explicitly or implicitly [12]. In 
this paper, our objective is to investigate the feasibility of 
using multiple video frames (fused on image level) directly 
for face recognition, without reconstructing a specific 3D 
model or fitting a generic 3D model. 

III. EXPERIMENT DESIGN 

A. Video Collection 
Videos were acquired in two collection sessions, with the 

second collection being carried out 20 days after the first one. 
101 subjects participated in the first collection, among which 
47 subjects returned for the second collection (see Table I). 
The videos of the 47 subjects who enrolled in both collections 
will be used as gallery and probe sets, while the videos of the 
remaining 54 subjects who appeared only in the first 
collection will be used as the training set. Certain subjects 
showed noticeable changes in their appearance between two 
sessions, such as beards, mustaches, piercing and glasses 
(two subjects were allowed to wear eye glasses). 

 

 
 

 First Collection Second Collection 
Subjects 101 subjects. 47 subjects, 
Condition 
One 

Regular indoor light. 
Rotation: 90 degrees. 
Expression: neutral, 
smile, angry, surprise. 

Regular indoor light. 
Rotation: 90 degrees. 
Expression: neutral, 
smile, angry, surprise. 

Condition  
Two 

Strong Shadow. 
Rotation: 90 degrees. 
Expression: neutral, 
smile, angry, surprise. 

Strong Shadow. 
Rotation: 90 degrees. 
Expression: neutral, 
smile, angry, surprise. 

 
In each collection session, a subject sat on a rotating chair 

in front of a camcorder against a blue background curtain. 
The subject slowly turned his/her body by 90 degrees (from 
the frontal view to the profile view). The turning process was 
done twice, first with the regular indoor light, and then with 
strong shadows cast by a headlight. A few samples obtained 
under the two lighting conditions are shown in Fig. 1. 
 

 
(a) (b) (c) 

 
(d) (e) (f) 

 
 
 

Fig. 1.  Sample frames from two video sequences taken under a regular 
indoor light condition (a, b, c) and a strong shadow condition (d, e, f). 

Videos were acquired using a Canon XL1s camcorder with 
a speed of 30 frames per second. Each rotation resulted in a 
10-30 seconds long video sequence, which was then 
processed with the Adobe Professional software to generate 
300 to 900 frames, depending upon the rotation speed. All 
frames have a resolution of 720 x 480 pixels. 

 

B. Frame Selection 
The multi-sample approach requires that a frame pair from 

the gallery and probe sets must have the same or similar pose 
angle (rotation degree). Because subjects rotated at different 
and varying speeds, it is difficult to determine the pose angle 
in a particular frame accurately. To solve this problem, we 
developed a software tool that displays the nose positions of 
user specified angles. As shown in Fig. 2, we chose a 
coordinate so that the fontal view is 0 degree and the profile 
view is 90 degrees. X0 and X90 represent the nose positions on 
X-axis in those two views and are manually marked. Given an 
arbitrary angle α, its corresponding nose position Xα can be 
calculated by: 

 

αα sin)( 0900 XXXX −+=  
 



 
 

 

 
 

 
The software then automatically displays the nose 

positions of all user specified angles. Fig. 3 illustrates how to 
use the information to determine that the face has a pose angle 
of 20 degrees. Note that the nose positions of ten pose angles 
are displayed (0, 10, 20, 30, 40, 50, 60, 70, 80 and 90).  
 

  
(a) 0 degree rotation (b) 20 degrees rotation 

 
 
 

 

C. Fusion on Image Level 
The majority of biometric fusion was done on the score or 

rank level [13]. Only a few studies have used image (sensor) 
level fusion. For example, Chang et al [14] evaluated the 
performance of a multi-biometrics system by concatenating a 
face image and an ear image. Fusion on the image level has 
the advantage that information in raw data is preserved, and 
therefore is well suited for the multi-sample approach as long 
as the number of samples per subject is reasonably small. In 
this study, we used image level fusion to integrate as many as 
seven frames per subject. 

We performed fusion in three steps: (1) seven frames were 
chosen for each subject with following rotation degrees: 0, 
10, 20, 30, 40, 60 and 90; (2) each frame was normalized 
using the coordinates of two facial markers. If a face rotated 
by 0, 10, 20 or 30 degrees, the centers of eyes were used. If a 
face rotated by 40 degrees, the left corners of eyes were used. 
If a face rotated by 60 or 90 degrees, the top of the nose and 
the middle point between the center of the ear and the top of 
the nose were used (Fig. 4); (3) the normalized images 
(cropped by an elliptical mask) were then aligned vertically to 
create a fused image. Fig. 5 shows samples of fused images. 

(a) 0 degree rotation (b) 60 degrees rotation 
 
 

Fig. 4.  Selection of two facial markers for image normalization. For 60 
degrees rotation, the top of the nose and the middle point between the center 
of the ear and the top of the nose were used.  

 

 
(a) 

Gallery of Test 1, Test 2  
(b) 

Probe of Test 1 
(c) 

Probe of Test 2 

Fig.2. Calculation of the nose position for a particular pose angle. Note 
that X0 and X90 need to be marked manually. 

Fig.3. Determination of a frame in which the face has a 20 degrees
rotation. The square-shape markers indicate the nose locations of ten pose
angles: 0, 10, 20, 30, 40, 50, 60, 70, 80 and 90, from left to right. 

 
 

 

Fig. 5.  Samples of fused images. (a) Gallery from the first collection under 
regular light. (b) Probe from the second collection under regular light. (c) 
Probe from the second collection with shadows.  

D. Training, Gallery and Probe Sets 
We designed two tests, each with an independent training 

set. Test-1 includes a gallery of 47 subjects from the first 
collection under regular light, and a probe of the same 47 
subjects from the second collection under regular light. 
Test-2 consists of the same gallery as Test-1, but with a 
different probe from the second collection with strong 
shadows (See Table II and Fig. 5). It is worth noting that the 
training set of Test-2 must contain frames of both regular 
light and shadows. Otherwise, the eigenspace will be skewed 
due to the lack of representative samples, which may cause a 
large drop in recognition rate. All tests were run with a 
PCA-based recognition algorithm also known as the 
"Eigenface" method [15]. Its implementation details can be 
found in [16]. 



 
 

 

 
 
 

 Test 1 Test 2 
Training 54 subjects, 378 frames, 

from the 1st collection, 
independent from both 
gallery and probe sets. 
Regular indoor light. 

54 subjects, 378 frames, 
from the 1st collection, 
independent from both 
gallery and probe sets. 
Regular light + shadow. 

Gallery 47 subjects, 329 frames, 
from the 1st collection. 
Regular indoor light. 

47 subjects, 329 frames, 
from the 1st collection. 
Regular indoor light. 

Probe 47 subjects, 329 frames, 
from the 2nd collection. 
Regular indoor light. 

47 subjects, 329 frames, 
from the 2nd collection. 
Strong shadow. 

 

IV. RESULTS AND DISCUSSIONS 

A. Test-1: Regular Indoor Light 
The purpose of Test-1 is to examine the performance of 

multi-sample fusion using different numbers of frames per 
subject under the regular light. We started with one frame per 
subject (0 degree), and then fused it with the next frame (10 
degrees), until we integrated all seven frames. For example, a 
5-frame fusion concatenates frames in an increasing order of 
rotation degrees:  0, 10, 20, 30 and 40.  

The cumulative match characteristic (CMC) curves of 
Test-1 are plotted in Fig. 6. For visualization purpose, we 
only show results of using the odd number of frames per 
subject. An increasing improvement in the rank one 
recognition rate can be observed, from 91.4% with a single 
frame, to 95.7% with 3-frame fusion, to 97.8% with 5-frame 
fusion, and to 100% with both 6-frame fusion and 7-frame 
fusion. Although the starting rate of the single frame case is 
relatively high, an almost 10% performance increase is still 
considered to be significant. 

B. Test-2: Strong Shadow 
One way to assess the robustness and effectiveness of a 

recognition method is to apply it to images of severe 
illumination changes. So, we designed Test-2 that has the 
same data set as Test-1, except that its probe set consists of 
images from the second collection with shadows on the faces. 
As can be seen in the sample images (Fig. 1, Fig. 5 and Fig. 
8), the shadows almost black out half of the faces. If the 
method of using fused frames of rotating faces can yield 
significant performance gain under such an unfavorable 
condition, its value can be further justified. 

Fig. 7 shows the CMC curves of Test-2. As expected, the 
rank one rate of using a single frame is relatively low 
(63.8%). But the improvement can be clearly seen as the 
number of frames used in fusion increases.  The rank one rate 
goes up to 72.3% with 3-frame fusion, 80.8% with 5-frame 
fusion, and finally to 85.1% with 7-frame fusion, a more than 
20% increase.  Fig. 8 shows a face that was not recognized 
until rank 24 using a single frame, but was correctly 
recognized at rank one with 3-frame fusion.  

TABLE II 
TRAINING SET, GALLERY SET AND PROBE SET.  

 
 

Fig. 6.  Performance of multi-sample fusion (on the image level) measured 
as CMC curves. Both gallery and probe images were taken under the regular 
indoor lighting condition.   
 

 
 
Fig. 7. Performance of multi-sample fusion (on the image level) measured 
as CMC curves. Gallery images were taken under regular indoor light, 
while probe images were taken with strong shadows.  

 
 
Not recognized 
until rank 24 

 
(a) 1-frame gallery  (b) 1-frame probe 

  
 
 

 
 

Recognized at 
rank one 

 

(c) 3-frame gallery  (d) 3-frame probe 
 
 
 
 

Fig. 8.  An example that shows the recognition improvement of using 
fused images (3-frame) over using a single frame. (a) and (b) were not
recognized until rank 24, while (c) and (d) were recognized at rank one.



 
 

 

It should be stressed that not all fusions will result in 
positive outcomes. Fig. 9 illustrates the rather complex 
relationship between the rank one recognition rate and the 
number of frames used in fusion. The overall trend is that the 
performance improves as the number of frames per subject 
increases, but their relationship is not strictly monotonic. The 
recognition rate actually dipped quite a bit in certain cases. 
For instance, the 2-frame fusion did not improve the 
performance in both tests. There are several possible 
explanations: (1) during the rotation, many subjects blinked 
their eyes because of the headlight; (2) sometimes subjects 
rotated relatively fast leading to blurred images; (3) there 
might be a more fundamental issue of multi-sample fusion 
that is related to the interplay of sample sets and their 
combined effect. As suggested in [13], if two sets of samples 
are positively correlated, the noise in the samples could 
negate any performance gain from their fusion. In the 2-frame 
fusion case, the performance drop may be explained by the 
lack of variations between the 0-degree frames and the 
10-degree frames. In other words, the faces in those two sets 
are so similar that their fusion provides little complementary 
benefit. This explanation seems also consistent with the 
observation that using multiple identical images achieves the 
same performance as using one image [3]. 

 

 
 

 
To gain more insights into the performance of 

multi-sample fusion from a statistical perspective, we 
computed the probability distributions for both the match 
class and the no-match class in Test-2 using the Mahalanobis 
distance matrices. The match class refers to the gallery-probe 
pairs from the same person (the diagonal entries in the 
distance matrices), and the no-match class refers to the 
gallery-probe pairs from different persons (all non-diagonal 
entries in the distance matrices). The distributions of using a 
single frame, 2-frame fusion and 7-frame fusion are shown in 
Fig. 10, Fig. 11 and Fig. 12, respectively. In the case that a 
single frame (fontal view) was used, the probability 
distributions of two classes show large overlaps, suggesting 
that many samples will be misclassified by a simple minimum 

distance criterion. On the other hand, the probability 
distributions of using 7-frame fusion exhibit a much 
improved separation between the two classes, which explains 
the observed higher recognition rate. However, there is no 
noticeable difference between the probability distributions of 
using a single frame and those of using 2-frame fusion. 

 

 Fig. 10.  The probability distributions obtained from the Mahalanobis 
distance matrices of Test-2 using a single frontal view image.   

 

  

 Fig. 11.  The probability distributions obtained from the Mahalanobis 
distance matrices of Test-2  using 2-frame fusion.  
 

 
 Fig. 9.  The relationship between the rank one recognition rate and the

number of frames used in fusion.  

 Fig. 12.  The probability distributions obtained from the Mahalanobis 
distance matrices of Test-2 using 7-frame fusion.  
 

 



 
 

 

V. SUMMARY 
To achieve a significant increase in face recognition rate 

under challenging conditions necessitates the development of 
new techniques such as 3D scans, high resolution images, 
multi-sample and multi-modal methods [17]. Using videos 
that capture the continuous pose and illumination changes of 
moving faces to provide implicit 3D information is one 
possible solution. In this paper, we present some preliminary 
experimental results of recognizing faces that rotated up to 90 
degrees using multi-frame fusion. Based on the two tests with 
videos taken under two lighting conditions, several 
observations can be made:  

 

1) Recognition rate shows large improvements in both tests, 
about 10% under the regular lighting condition and about 
20% under the strong shadow condition. This 
performance increase can be, to a large degree, attributed 
to the coherent intensity variations in video frames that 
are linked to the 3D geometry of a rotating face and its 
interaction with lights.  

 

2) A linear function seems inadequate to describe the 
relationship between the recognition rate and the number 
of frames used in fusion. It is likely that finding an 
optimal number of frames to achieve the maximum 
performance increase will be task-dependent. We will 
conduct more experiments using 20 to 90 frames per 
subject with rotation intervals of 1 to 5 degrees. We will 
also investigate this issue in the framework of 
scale-space aspect graph so as to find the minimum 
number of frames that can provide sufficient 3D 
information for face recognition [18]. 

 

3) Fusion of certain frames can lead to performance drops. 
We present some qualitative analysis based on the 
probability distributions of two classes. More thorough 
investigations using the canonical correlation coefficient 
or a diversity index may shed light on this issue.  

 

Since our motivation is to utilize implicit 3D information in 
videos via multi-frame fusion, it would be interesting to 
compare its performance with those of using explicit 3D data 
such as range images, so that its efficacy can be 
benchmarked.  This requires a data set that includes both 
range images and rotating head videos of the same subject.  
We plan to collect those data and double the size of our 
database to 200 subjects. One related issue is whether image 
level fusion and score level fusion would yield the same 
performance, because score level fusion is more 
computationally attractive if a large number of frames are 
needed for fusion. Finally, we would like to emphasize that, 
although a complete video sequence of 90 degrees head 
rotation is rare in real situations, this kind of data is an ideal 
testbed that allows us to examine various factors that 
influence the performance of the multi-sample method. 
Moreover, in certain realistic scenarios such as video 
surveillance, even a short video segment that captures partial 
head rotation could be valuable for recognition. 
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