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Abstract— Mobile device usage data such as mobile app use
and acceleration measurements fluctuate often as individuals
carry out their daily tasks. As these data have emerged in
recent years as promising biometric identifiers, it is important
to understand the many causes of these variations such that
these systems can adapt without degradation in performance.
In this paper, we seek to understand the impact of changes in a
person’s mood on the performance of a mobile biometric system
using a publicly available dataset of 27 subjects. We explore the
verification and identification tasks, along with mood prediction
from smartphone data. We achieved an equal error rate of 3%
and a d-prime value of 5.05 for the verification task, wherein
experiments showed that verification is minimally influenced
by an individual’s mood, although negative arousal slightly
degraded performance. We created a multi-class problem to
study the identification task, achieving an average 83% F'1-
score. Here, we observed that subjects with lower identification
accuracy (<70%) experienced fewer mood changes compared
to the average (13.48), while all but one subject with high iden-
tification accuracy (>95%) experienced more mood changes
compared to the average. Contrasting previous claims, our
findings suggest that frequent changes in mood may have
little negative impact performance. Finally, positive arousal and
negative valence yielded the highest area under the curve (0.67)
for mood prediction. This was also the class associated with the
highest average genuine and lowest average imposter scores for
verification experiments, suggesting a correspondence between
recognition and mood prediction tasks that applications such
as sensor-enhanced mHealth apps could leverage.

I. INTRODUCTION

Research on behavioral biometrics for smartphone users
has resulted in a diverse set of topics ranging from continu-
ous authentication using touch and keystroke data (e.g., [30],
[18]) to usability surveys on commercial face and fingerprint
systems (e.g. [3], [15]). Behavioral mobile biometrics have
gained attention considering the merits associated with trans-
parent, continuous sensing in comparison to point-of-entry
methods [21]. For example, point-of-entry methods may
require nearly 50 unlock attempts per day [10]. For some,
point-of-entry methods have been regarded as awkward [5]
or inconvenient [10].

Behavioral biometrics pose challenges as well. Behavioral
signals, such as tone in voice [8], touch location on the
screen during swipes or flicks [9], and usage activity (e.g.,
app launches or calling patterns) change over time according
to an individual’s location, current task, etc. Exactly how
these changes affect mobile, behavioral biometric systems,
however, has yet to be clearly realized. Meanwhile, the
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requirement that a biometric modality “should be sufficiently
invariant (with respect to the matching criterion) over a
period of time”, or permanent, is a critical component of
performance [11], [12], [22].

In this paper, we seek to understand the impact of mood
on performance in a mobile biometric system as mood is
frequently claimed to be one of many factors influencing
changes in mobile, behavioral biometric modalities [20].
Mood, less intense ‘“affective states that are capable of
influencing a broad array of potential responses, many of
which seem quite unrelated to the mood-precipitating event”
[19], has been extensively measured via physiological signals
[14], [25], [27], [7]. However, activity data gathered from
mobile devices have also proven useful for mood detection
in a more passive manner [2], [28], [17], although none have
evaluated the impact of mood on phone usage in the context
of biometric recognition. One particular study evaluated the
impact of stress on handwriting recognition [4], but most
efforts have only assumed that mood may affect usage which
in turns affects recognition performance [17].

Improved mood detection performance using person-
specific classification models trained on smartphone activity
data suggests that an individual’s mood may alter their
biometric template data [17], [1], [23]. These results motivate
our current research to better understand the impact of
variations in mood on the permanence of phone usage when
considering this data as a biometric modality. We view the
possible impact of mood comparable to occlusions or pose in
face recognition [6]. By identifying mobile occlusions, future
efforts can work toward developing algorithms which can
control or adapt to these factors. We explore three research
questions:

1) Could changes in an individual’s mood have a signifi-
cant impact on the performance of a mobile biometric
system?

2) If so, do these changes affect verification, identification,
or both recognition tasks?

3) What might mood prediction experiments using smart-
phone activity data imply about the recognition tasks?

In the following section, we detail the dataset used and
our experimental approach. We provide results in Section 3
for all three research questions. We summarize and highlight
key insights, future work, and limitations in Section 4.



II. METHOD

A. Dataset

We used a publicly available dataset consisting of the
smartphone activity data collected from 27 subjects [1].
Examples of collected data include statistics on call events
such as timestamp of the call and duration, text message
information, and time and date of captured photos. Par-
ticipants were selected if they were at least 18 years old
and used an Android phone as their primary mobile device,
while participants exhibiting depressive symptoms according
to the Center for Epidemiologic Studies Depression Scale
[16] were excluded. All captured variables used in our ex-
periments are described in Table I. Accompanying these data
were self-reported mood captured via ecological momentary
assessment [26], [1]. Participants self-reported their mood
up to five times a day over six weeks. Mood was assessed
according to the Circumplex Model of Affect [24], where
mood is represented on a two-dimensional scale of valence
(goodness) and arousal (intensity).

Once data were collected, the researchers averaged device
activity and self-reported mood entries per day. As a result,
each sample in the post processed dataset (and the version
released for public use) represents an individual’s average
device activities and their overall mood per day. The final
dataset included mood and phone usage information for
27 participants, each having 35.5 days of data on average
(totaling 959 days (samples) in the dataset).

TABLE 1
DATASET FEATURES [1]

Features Description # of
Dimen-
sions

Valence Daily average 2D level of valence from -2 to 2 1

Arousal Daily average 2D level of arousal from -2 to 2 1

Images Number of photos captured 1

SMS Frequency of text messages sent to top 5 con- | 5

tacts

Call Frequency of calls to top 5 contacts 5

Frequency

Call Duration of calls to top 5 contacts 5

Duration

App Frequency of launch events for top 5 apps 5

Launches

App Duration of use for top 5 apps 5

Duration

App Frequency of app categories (built-in, commu- | 12

Category nication, entertainment, finance, game, office,

Frequency social, travel, utilities, weather, other, unknown)

App Duration of app categories 12

Category

Duration

Screen Fre- | Screen-on frequency 1

quency

Screen Dura- | Screen-on duration 1

tion

Accelerometer| Average percentage of high acceleration 1
Total:
55

B. Experiments

Verification (genuine versus imposter) and identification
(one-to-many) experiments were run, both using a soft voting
classifier (i.e., ensemble learning). A soft voting classifier
fuses the matching scores of several individual classifiers.
In our experiments, we used a random forest, a radial
basis function kernel support vector machine (SVM), and
a Gaussian naive Bayes classifier. We performed a grid
search to optimize the parameters of the random forest (20
or 200 trees) and the SVM (C = 1,10,100,1000 and
v = 0.001,0.0001) with 5-fold cross validation for every
training set. We employed leave-one-out cross validation for
all experiments. For all experiments, we employed random
under sampling to prevent a bias toward the majority class.

Recognition performance was evaluated using the F'1-
score (harmonic mean of precision and recall), Equal Error
Rate (EER) (error rate at which the False Acceptance Rate
and False Reject Rate are approximately equal), receiver
operating characteristic (ROC) curve, and score distribution
plots.

Finally, when studying mood, we considered four classes:
positive arousal and positive valence (happiness or excite-
ment), positive arousal and negative valence (tense or frus-
tration), negative arousal and positive valence (relaxed or
calm), and negative arousal and negative valence (sadness or
depression).

ITI. RESULTS
A. Mood Versus Verification

We ran verification experiments using all features except
valence and arousal. Treating a subject’s ID as the classifi-
cation label, Figures 1 and 2 show an achieved EER of 3%
and d-prime of 5.05. Figure 2 shows satisfactory separation
between genuine and imposter scores. We note that we are
unaware of any previous work demonstrating that a single
sample per day of smartphone activity is just as useful for
verification as a series of samples.
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Fig. 1. DET curve of verification experiments (EER = 0.03).
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Fig. 2. Score distribution plot of verification experiments (EER=0.03).

In our analysis of the impact of mood on verification
performance, we studied the mean and standard deviation
of genuine and imposter scores for each of the four mood
states previously detailed. Table II shows a slight increase in
performance when individuals are in a tensed or stressed
state, with improving accuracy from states of happiness,
relaxed, and sadness. The spread of genuine and imposter
scores also increases across these three. However, as these
means and deviations remain fairly close and there are very
few data sources to allow a broad evaluation of our research
questions, we simply state our findings as observations
instead of conclusions. In summary, our experiments show
that the verification task is minimally influenced by an
individual’s mood, although negative arousal appears to have
a slightly more negative impact on performance.

TABLE II
SCORE DISTRIBUTIONS PER MOOD STATE.

Pos. Neg. Pos. Neg.
Arousal, Arousal, Arousal, Arousal,
Pos Pos. Neg. Neg.
Valence Valence Valence Valence
Genuine Score (u) 0.87 0.85 0.89 0.84
Imposter Score () 0.13 0.15 0.11 0.16
Standard Deviation 0.13 0.15 0.10 0.19

B. Mood Versus Identification

Using the same features as verification, we create a multi-
class problem to study the identification task. Table III shows
the achieved precision, recall, and F'l-scores per subject.
On average, an 83% F'l-score was achieved. Again, to our
knowledge, this is the first demonstration of the use of a
single, daily sample of smartphone activity for identification.
In fact, most mobile biometric work is focused on the
verification task. In this table, light gray rows correspond
with F'l-scores above 95%, and dark gray rows correspond
with F'l-scores below 70%. We highlighted these rows to
allow better visualization of potential trends that might be
associated with each person’s mood.

As most subjects have the same mood for most of their
samples (see column Typical Mood), we found no significant
correlation between a person’s most common mood state
and the ability to identify them. We also list the number
of mood changes, going from one mood state to another in
consecutive samples. The average number of mood changes
was 13.48. Regarding this statistic, we found that subjects
with lower identification accuracy (dark gray rows) had fewer
mood changes than the average, while all but one subject
with high identification accuracy (light gray rows) had more
mood changes than the average. Finally, we also identified
the number of extreme mood changes between consecutive
samples, switching from positive valence and arousal to
negative valence and arousal. There were very few of these
occurrences (less than one per subject on average) as shown
in Table III, such that no conclusions could be drawn.

In summary, our major insight regarding the identification
task is that lower identification accuracy was associated
with fewer changes in mood, while high performance was
associated with more mood changes. Contrasting previous
claims, our findings suggest that frequent changes in mood
may not negatively impact performance, but may, in fact,
improve performance.

C. Mood Recognition via Activity Data

We continued our analysis of mood by running an addi-
tional set of experiments to determine if smartphone activity
data could be used to predict an individual’s mood state.
Using the same features as verification and identification,
the classification label was changed to one of the four
mood states. Figure 3 plots the ROC curve for each class.
Interestingly, the average area of these curves (AUC) is 0.60.
Positive arousal and negative valence yielded the highest
AUC (0.67). This was also the class associated with the
highest average genuine and lowest average imposter scores
for verification experiments (see Table II). We also found
a greater difference in performance for these experiments
compared to the verification and identification tasks. Specif-
ically, we found that the level of valence played a greater
role in the utility of activity data to predict mood than it did
for recognition. This could provide an indication that feeling
down (stressed or depressed) alters the way a person uses
their device (though not to a significant enough degree that
they deviate from their usual usage patterns). Consequently,
this observation is likely a key factor in the emergence of
mHealth applications which leverage smartphone sensors to
learn and respond to users’ moods in real-time [29].

IV. SUMMARY

It is well known that smartphone activity data, an emerging
and promising biometric identifier, changes over time as an
individual’s experiences or contexts change. Exactly how
these changes affect mobile, behavioral biometrics, however,
requires further investigation. We sought to understand the
impact of mood on performance in a mobile biometric
system as mood is frequently claimed to be one of many
factors influencing changes in mobile, behavioral biometric



TABLE III
PRECISION AND RECALL FOR IDENTIFICATION EXPERIMENTS PER
SUBJECT WITH CORRESPONDING MOOD STATISTICS. LIGHT GRAY ROWS
CORRESPOND WITH F'1-SCORES ABOVE 95%, AND DARK GRAY ROWS
CORRESPOND WITH F'1-SCORES BELOW 70%.

D Typical Mood # Mood | # [Ex- | Precision| Recall F1-
Changes | treme Score
Mood
Changes
1 Pos. Valence, Neg. 15 0 0.92 0.6 0.73
Arousal
2 Pos. Valence, Neg. 21 3 0.68 0.79 0.73
Arousal
3 Pos. Valence, Pos. Arousal | 4 0 0.95 0.97 0.96
5 Pos. Valence, Neg. 19 1 0.9 0.9 09
Arousal
6 Pos.  Valence, Neg. | 23 0 1 0.97 0.99
Arousal
7 Pos. Valence, Neg. 17 2 0.86 0.69 0.77
Arousal
8 Pos. Valence, Neg. 12 0 0.59 0.76 0.67
Arousal
9 Pos. Valence, Pos. Arousal 17 3 0.92 0.94 0.93
12 Pos. Valence, Pos. Arousal | 21 1 0.85 0.89 0.87
13 Pos. Valence, Neg. 9 0 0.97 0.83 0.89
Arousal
14 Pos. Valence, Neg. 13 0 0.76 0.94 0.84
Arousal
15 Pos. Valence, Pos. Arousal | 8 0 0.64 0.6 0.62
16 Pos. Valence, Pos. Arousal 11 0 0.78 0.39 0.52
17 Pos. Valence, Pos. Arousal | 4 0 0.94 0.8 0.86
19 Pos. Valence, Neg. 20 0 0.94 0.78 0.85
Arousal
20 Pos. Valence, Pos. Arousal | 9 1 0.45 0.86 0.59
23 Pos. Valence, Pos. Arousal 13 0 0.94 0.89 091
24 Pos. Valence, Pos. Arousal 12 1 0.96 0.74 0.83
25 Pos. Valence, Neg. 16 2 0.95 0.77 0.85
Arousal
26 Pos. Valence, Pos. Arousal 15 0 0.8 0.86 0.83
27 Pos. Valence, Pos. Arousal | 20 0 0.92 0.89 0.9
28 Pos. Valence,  Neg. | 13 0 0.8 0.85 0.82
Arousal
29 Pos.  Valence, Neg. | 15 0 0.94 0.97 0.96
Arousal
30 Pos. Valence, Neg. 8 0 0.92 0.9 0.91
Arousal
31 Pos. Valence, Pos. Arousal | 2 0 0.59 0.84 0.69
32 ‘ Pos. Valence, Pos. Arousal 11 ‘ 1 0.96 0.89 0.93
33 Pos. Valence, Neg. 16 2 1 091 0.95
Arousal
[ 1348 | 0.63 85% 82% 83%

modalities. We explored three aspects to this problem. (1)
Could changes in an individual’s mood have a significant
impact on the performance of a mobile biometric system?
(2) If so, do these changes affect verification, identification,
or both recognition tasks? (3) Does the use of smartphone
activity data for mood prediction correlate with biometric
recognition?

To explore these questions, we first ran verification ex-
periments, achieving an EER of 3% and d-prime of 5.05.
Overall, our experiments showed that the verification task
is minimally influenced by an individual’s mood, although
negative arousal appears to have a slightly more negative im-
pact on performance. We then created a multi-class problem
to study the identification task. On average, an 83% F'1-score
was achieved. In general, we found no significant correlation
between a person’s mood and the ability to identify them, but
there was an indication that subjects with lower identification
accuracy had fewer mood changes compared to the average.

We continued our analysis of mood by running an addi-
tional set of experiments to determine if smartphone activity
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Fig. 3. ROC curve for smartphone activity recognition according to the

four quadrants of the Circumplex mood model.

data could be used to predict an individual’s mood state, and
if outcomes of these experiments would correlate with our
findings from studying verification and identification. Using
the same features as verification and identification, the clas-
sification label was changed to one of the four mood states.
Positive arousal and negative valence (i.e., tense, stressed, or
frustration) yielded the highest AUC (0.67). This was also
the class associated with the highest average genuine and
lowest average imposter scores for verification experiments.
Consequently, this observation is likely a key factor in the
emergence of sensor-enhanced mHealth applications.

One limitation of our study is the total number of samples
per subject, covering approximately only one month of
smartphone activity. In addition, due to the limited number
of publicly available datasets with samples annotated with
mood, our experiments were only evaluated with a single
dataset. Further, although our experiments were evaluated
against a voting classifier, future work should also consider
a wide range of classifiers, including deep neural networks.
Because there were very few samples, we were not able to
leverage the learning capabilities of deep neural networks.
Future work should also consider the impact of emotion;
whereas mood lasts much longer and is more difficult to
explain, emotions are brief episodes with concrete causes.
As a consequence, people may be much more reactive to
sudden emotions compared to mood, and it would be worth
exploring the impact of emotion on changes in behavior.
Considering this, an interesting application of this work is
a real-time system that both recognizes the emotion of an
individual, as well as uses this information to help further
identify them. It has been shown that video and audio can
be fused to recognize emotion in a ubiquitous environment
(e.g. mobile device) [13]. An ensemble-based approach, such
as through the fusion of facial data, audio, and smartphone
activity, could have the potential to offer new insight into the
impact of emotion on mobile biometrics.
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