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Abstract— In this paper, we propose a method for pain recog-
nition by fusing physiological signals (heart rate, respiration,
blood pressure, and electrodermal activity) and facial action
units. We provide experimental validation that the fusion of
these signals results in a positive impact to the accuracy of
pain recognition, compared to using only one modality (i.e.
physiological or action units). These experiments are conducted
on subjects from the BP4D+ multimodal emotion corpus, and
include same- and cross-gender experiments. We also investigate
the correlation between the two modalities to gain further
insight into applications of pain recognition. Results suggest
the need for larger and more varied datasets that include
physiological signals and action units that have been coded
for all facial frames.

I. INTRODUCTION

Assessing pain can be difficult and subject self-report is
the most widely used form of assessment. When it is reported
in a clinical setting, the measures are subjective and no
temporal information is available [10]. Automatic methods
to recognize pain have the potential to improve quality of life
and provide an objective means for assessment. Considering
this, in recent years there has been encouraging works, in
this direction, that include analysis of facial expressions,
physiological signals, and kinematics and muscle movement.

To facilitate advances in automatically recognizing pain,
Aung et al. [1] developed the EmoPain dataset which con-
tains multi-view face videos, audio, 3D motion capture, and
electromyographic signals from back muscles. The dataset
contains 22 patients (7 male/15 female) with chronic back
pain and 28 healthy control subjects (14 male/female). They
released baseline results on both facial expressions and
muscle movements. Using this dataset, Wang et al. [18]
proposed the deep learning architecture, BodyAttentionNet,
to recognize protected behavior [17]. This architecture learns
temporal information including which body parts are better
suited to this task. They showed improved recognition accu-
racies, as well as a model with 6 to 20 times fewer parameters
compared to state of the art. Olubbade et al. [13] proposed
a method for automatically recognizing pain levels using
kinematics and muscle activity. They trained a random forest
and support vector machine, with data from the EmoPain
dataset, showing accurate results for recognizing low and
high pain, as well as as healthy control levels.

Fabiano et al. [8] proposed a method for fusing phys-
iological signals for emotion recognition. They developed
a weighted fusion approach, showing that using the fused
signals can accurately detect pain, in the BP4D+ dataset

[19], 98.48% of the time. Olugbade et al. [14] investigated
how affective factors in chronic pain interfere with daily
functions. They found that movement data can recognize
distinct distress and pain levels. Lucey et al. [10] proposed
an active appearance model-based approach to detect pain in
videos, from the the UNBC-McMaster shoulder pain dataset
[11], using facial action units (FACS) [7]. Their approach is
encouraging, showing that action units can be used to detect
pain, motivating the use of this modality here.

Motivated by these works, we propose a method for
recognizing pain with the fusion of physiological data (e.g.
heart rate, respiration, blood pressure, and electrodermal
activity) and facial action units [7]. Using the BP4D+ dataset
[19], we fuse action units from the most expressive part of
the face, along with physiological signals that have been
synced to have a one-to-one correspondence with each facial
image that contains action units. We conduct experiments to
validate the utility of the proposed fusion method, showing
the fused signals result in a positive impact to the accuracy of
detecting pain. We further analyze the correlations between
the modalities giving insight into future applications of pain
recognition. The contributions from this work are 3-fold and
can be summarized as follows:

1) A method for recognizing pain through the fusion of
physiological signals and action units is proposed.

2) Insight into the correlations between physiological
signals and action units is shown.

3) Cross-gender (female vs. male) experiments are con-
ducted for pain recognition, as well as correlations
between modalities.

II. FUSION AND EXPERIMENTAL DESIGN

To recognize pain, we propose to fuse physiological sig-
nals and action units (AUs) from the most facially expressive
segments of sequences of tasks meant to elicit emotion. The
most expressive segment is defined as the frames where
Facial Action Units (AUs) [7] have been manually annotated
by experts. To facilitate our experimental design, we use the
BP4D+ multimodal emotion corpus [19].

A. Multimodal Dataset (BP4D+)

BP4D+ [19] is a multimodal dataset that include thermal
and RGB images, 2D and 3D facial landmarks, manually
coded action units (33 total), 4D facial models, and 8
physiological signals (diastolic blood pressure, mean blood
pressure, EDA, systolic blood pressure, raw blood pressure,



TABLE I: Pain recognition results using physiological signals, action units, and the fusion of both. M=Male; F=Female.

Modalities All Subjects Male Female Trained (M) / Tested (F) Trained (F) / Tested (M)
Metric Acc F1 Score Acc F1 Score Acc F1 Score Acc F1 Score Acc F1 Score

Physiological 77.70% 0.3 75.25% 0.285 76.98% 0.269 69.14% 0.35 75.43% 0.219
Action Units 89.02% 0.734 88.00% 0.668 90.73% 0.778 88.27% 0.725 87.50% 0.753

Fused 89.20% 0.75 88.58% 0.689 91.35% 0.787 88.27% 0.725 86.31% 0.75

pulse rate, respiration rate, and respiration volts). There are
140 subjects (58 male and 82 female) with an age range
of 18 − 66. Action units are manually coded on the most
expressive frames of each sequence (task). Emotions are
elicited through 10 tasks that the subjects perform. In this
work, as we are focusing on pain, our experiments focus on
the cold compressor task (i.e. the subjects place their hand
in a bucket of ice water for an extended time). We use the
physiological signals, and AUs for 139 of the subjects in
our experimental design as Subject F082 has some missing
features, therefore this subject is removed which follows the
experimental design from Fabiano et al. [8]. Approximately
20 seconds of the most expressive frames are coded, and four
tasks, that is, the target emotions of happy, embarrassment,
fear and pain are coded for action units. Considering this,
we use these four emotions for our experiments.

B. Syncing Physiological Signals with AUs

The frame rate of the video recordings in BP4D+ are
25 frames per second (fps) where as the sampling rate of
the physiological signals is approximately 1000 frames per
second. Due to this difference in sample rate between the AU
frames and physiological signals, synchronization is needed
to perform fusion of the modalities. To do this, we first
calculate the number of frames in the sequence and then
down sample the physiological signals, to that same number,
using the one step bootstrapping technique [15]. Using this
technique, on physiological signals, reduces the number of
samples while retaining the important information in the
signals [8]. This then gives us a one-to-one correspondence
(i.e. synced) between each video frame and physiological
signal. It is important to note that the video sequences
are not the same length (i.e. different number of frames
across subjects). Considering this, we do a final re-sample,
of the most expressive segments, to 5000 frames. We use
the physiological signals and AUs from these 5000 synced
frames to facilitate our fusion approach.

C. Fusion of Physiological Signals and AUs

Given the 5000 frames of synced physiological signals and
AUs, from the most expressive segments, we concatenate
them to form a new feature vector. For each frame, we
concatenate 33 AUs and 8 physiological signals, giving
the feature vector, f = [AU1, ... , AU33, Phys1, ... , Phys8].
Where AUi are the 33 AUs and Physj are the 8 physiological
signals as detailed in Section II-A. As we want to incorporate
temporal information into our pain detection approach, we
then concatenate f from each of the 5000 synced frames giv-
ing us our final feature vector, F = [f1, ... , f5000]. This final
concatenation results in a feature vector of size 205, 000

(41 × 5000), which is then used to recognize pain. The
proposed fusion results in 1 feature vector for each sequence
giving us a total of 556 feature vectors across the 4 tasks
(139 subjects ×4 tasks).

D. Pain Recognition Experimental Design

As detailed in Section II-A, BP4D+ has sequences from
4 tasks that have been manually AU coded (happy, embar-
rassment, fear and pain). As we are interested in recognizing
pain, we treat the pain sequences as our positive classes (i.e.
pain), and data from the other 3 sequences as our negative
class (i.e. no pain). This experimental design is consistent
with other works that have investigated pain recognition
on BP4D+ [8]. Using this experimental design, we train a
random forest classifier [5], using the feature vectors, F ,
to recognize pain vs. no pain. The random forest consisted
of 275 trees, and we validated our approach using subject-
independent 10 fold cross-validation on all subjects (139).
Along with training and testing on all subjects, we all per-
formed cross- and gender-specific experiments. For each of
these experiments, we evaluated each independent modality,
that is, physiological signals and action unit independently,
as well as the proposed fusion approach (Section II-C).

III. RESULTS

A. Pain Recognition

For our pain recognition experiments, we report overall
accuracy, as well as the F1-score for each experiment. For our
subject independent experiments on all tested subjects, we
achieved an accuracy of 89.2% and F1-Score of 0.75 when
fusing the physiological signals and action units. Although
physiological signals performed reasonably well as a single
modality, with 77.7% accuracy, their F1-Score is low with
0.3. Using this modality, the majority of instances were
classified as no pain which is the class containing more
samples. It is interesting to note though that action units
alone achieved an accuracy of 89.02% and F1-Score of
0.734. These results agree with the literature that AUs can
be a powerful representation for automatically recognizing
pain [10].

For our gender-based experiments, similar results are
obtained. When training and testing on male subjects or
female subjects the accuracy of the physiological signals is
approximately 76%, while the F1-Score is approximately
0.28. Again with the majority of classifications being labeled
as no pain. In both cases (male or female) action units
performed well with an accuracy of approximately 89%
and F1-Score of 0.668 and 0.778 for male and female
experiments, respectively. Along with testing and training
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Fig. 1: Visual comparison between reparation and blood pressure, and facial expressions (i.e. action units) occurring at same
time. During Seq 1, the subject has placed their hand in the bucket of ice water. Seq 2 is approximately 20 seconds after
placing hand in bucket, and the most expressive sequence occurs after 40 seconds of hand being in bucket.

on male or female, we also conducted cross-gender experi-
ments (e.g. trained on female and tested on male). In these
experiments, again the results are similar where physiological
has a low F1-Score of approximately 0.28. The interesting
result is that the fusion did not help in this scenario. The
fusion for training on male and testing on female resulted
in the same accuracy of 88.27% and F1-Score of 0.725.
When training on female and testing on male, the fusion
caused a slight decrease in accuracy of 1.19% compared
to action units alone. This can partially be explained by the
differences in correlations between male and female subjects
when analyzing the most expressive parts of the sequences
(See Figs. 2b and 2c). See Table I for all experimental results.

B. Comparison to State of the Art
To the best of our knowledge, there is no direct comparison

to this work using the selected modalities from BP4D+.
Fabiano et al. [8] investigate pain recognition using fused
physiological signals from the BP4D+ dataset, however,
their approach was not subject independent where we used
a subject-independent experimental design. As this is the
closest approach to ours, we detail their results compared
to ours. Using their proposed approach and a feed-forward
neural network, they achieved pain recognition accuracies of
98.48%, however, they also evaluated their method using
support vector machine (92.64%), random forest (90.27%),
and naı̈ve Bayes. (89.77%). Using a random forest trained
on physiological signals only, with a subject-independent
approach, we achieved an accuracy of 77.7%. When fusing
the physiological signals with AUs, the proposed approach
achieves an accuracy of 89.2% which is comparable to the
results from Fabiano et al. when using a random forest.

IV. DISCUSSION

From our analysis of physiological signals and AUs, with
respect to pain, we make two observations.

1) The peak for physiological signals and facial expres-
sions occur at different times. (see Fig. 1)

2) Physiological signals are highly correlated during the
most expressive parts of the sequence, however, not
when the entire signal is analyzed (Fig. 2).

In Fig 1 we have have shown the two physiological
signals, respiration (Fig. 1a) and blood pressure (Fig. 1b),
and the facial expressions of three segments of the physio-
logical signal. The instant where we see the most variance
in physiological signals (Seq 1) there is no facial motor
response (Fig 1c) and when the facial expression occurs
(Fig 1e), the physiological signals are leveled and there is
little variance in the signals. To further analyse this effect
of variance of signals at different times during the task, we
calculated the correlation [3] between the signals during the
most expressive sequence, as well as the entire signal (Fig.
2). As seen in Fig. 2d, the physiological signals during the
entire sequence are not well correlated, but when we sample
the physiological signals for the most expressive part of the
sequence the physiological signals become highly correlated,
as seen in Fig. 2a. This increase in correlation can be seen
across gender as well. One possible explanation for the low
accuracy of pain recognition, using physiological signals, can
be this change in variance and correlation of physiological
signals during the most expressive part of the video. It has
been shown that physiological signals with higher variance
tend to perform better at recognizing pain [8].

We have seen that exposure to ice cold water is seen
to cause physiological changes in the autonomic nervous
system – metabolic rate, circulatory system and respiratory
system (Fig. 1). This analysis is consistent with results from
the medical literature. Circulatory dynamics show effects
of different temperatures on the cardiovascular system (Fig.
1b). Immersion in ice cold water stimulates thermoreceptors,
activates different regulatory systems (sympathetic nervous
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Fig. 2: Correlation matrices of physiological signals and action units. Top row, of matrices, shows the most expressive parts
of the sequence. Bottom row, of matrices, shows the entire physiological signal, without AUs.

system and endocrine function), different effector mecha-
nisms and increases heart rate, systolic blood pressure and
diastolic blood pressure [16]. Increase in heart rate is seen
to continue or show maintenance until the exposure to ice
cold water is discontinued [12]. 1-mm immersion of hand
or foot may show increase in systolic and diastolic blood
pressure by 10 - 20 mm/Hg [9]. Immersion in ice cold water
has significant effects on the autonomic nervous system.
Breathing slows down to retain carbon dioxide and result
in acidosis when exposed to low temperatures. This occurs
due to mild alterations in the brain stem neuronal systems
[6]. Voluntary movements which include motor actions and
emotional expression are dependent on the sensory stimulus
which occurs due to the peripheral connection with the brain
[2]. Objects emotionally felt are the result of action -reaction
of the cerebral cortex and diencephalon [2].

It is seen that when subjects are exposed to ice cold water,
a spike in physiological changes occurs first, that is increase
in heart rate, blood pressure and decrease in respiratory
rate which is followed by motor response, that is facial
expressions. This is due to the reflex arc mechanism which
explains the synapse between sensory and motor neurons.
When exposed to external stimuli, sensory signals are sent
to the central nervous system through the nerve pathway
which causes changes at the physiological levels and relays
back the signals to the motor neurons and the motor actions
occur [4]. Considering this, these results suggest the need

for physiological signals and the coded AUs for the entire
sequences, for improved pain recognition applications.

V. CONCLUSION

We have proposed a multimodal approach to detect pain,
using physiological signals fused with action units. We
have conducted experiments, on the BP4D+ dataset, using
single modalities, as well as the fusion of both. Experiments
also include same- and cross-gender validation. Using the
most facially expressive segments from sequences shows that
physiological data results in a lower F1-Score, while action
units give significantly improved results, and the fusion of
both further improve accuracies when evaluations include all
subjects or same gender. Along with our experimental design,
we have also given an in-depth analysis of the correlation
between the physiological signals and the action units. This
analysis shows that there is a high correlation between
these modalities during the most expressive segments of the
sequences, however, when the entire sequence is analyzed the
correlation decreases. Due to the temporal nature of emotion
(Fig. 1) and the differences in correlations between most
expressive sequences and others, we suggest larger and more
varied datasets that include physiological signals, as well as
facial images that have action units coded for all sequences.
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