Three-level Training of Multi-Head Architecture for Pain Detection

Saandeep Aathreya Sidhapur Lakshminarayan, Saurabh Hinduja and Shaun Canavan
Computer Science and Engineering, University of South Florida, Tampa, Florida

Abstract—Precise pain detection is a complex task even
for trained professionals. There are many occasions where
self-reporting fails to capture the decisive pain measurement.
Facial expressions help extract the subtle emotions which can
be leveraged to detect pain levels. In this paper, we present
our approach to task 1 of the FG 2020 EmoPain Challenge:
Pain-related Behavior Analysis, as well as our experimental
design and results. We utilize a multi-head approach with
the combined features of facial action units, facial landmarks,
HOG and deep features. This multimodal approach provides
insight into the contribution of each of these features and
their consolidated effect. To improve our regression model, we
adopt a three-level architecture where we observe an increase
in prediction accuracy as the levels deepen. We record results
comparable to the baseline on the challenge validation set.

I. INTRODUCTION

Facial expression recognition is an important field as it
has many real-world applications such as driver frustration
detection, assisting robots and pain detection in children
and elderly. The need for pain detection primarily arises
due to the inability of the patients to accurately self-report
their pain or their incapacity to express pain [6]. Another
roadblock might be the difference in understanding the pain
scales between patient and a doctor. This deems pain as a
subjective experience which does not have a direct metric
for measurement. Consequentially, pain assessment becomes
a highly influential task given the nuances in its nature. A
well-grounded assessment of pain is necessary to identify
a suitable anodyne. Many self-reporting and observational
standards are used to evaluate pain intensities. Verbal repre-
sentation, Numeric Scale Representation (NRS) [25] where
patients are usually asked to rate their pain, Visual Analog
Scales (VAS) [16] where patients point to a scale that lines
up with their pain intensity, and pain dairies are some of
the examples. However, Self-reporting cannot be taken into
account when dealing with patients who are incapable of
communicating the pain they experience. These may include
newborns, autistic patients or bed-ridden elderly. In these
cases, observational measurement needs to be performed by
a mediator under a clinical settings (e.g., Behavioral pain
scale (BPS) [28], Neonatal infant pain scale (NIPS) [8]). This
requires any caregiver to constantly monitor the patient’s
health level in order to minimize the error in their labelling.
This is certainly not feasible in a real-world scenario.

Facial expressions are an informative indicator of pain
in behavioural scaling [15] and this has inspired research
into automatically detecting pain levels from facial features.
Current research uses a diverse set of features such as
facial expression, body movement, and speech. Using the
geometric facial features have been found useful in part due

to vast information which can be extracted from them [15].
There are several approaches that make use of the features
extracted from facial expressions [2] such as landmarks [9],
facial action units [24] and hand-crafted deep features [6] to
classify/predict the pain levels. Egede et. al [6] makes use
of combination of hand-crafted and deep learned features
extracted from 66 facial landmarks and the action units which
achieved a Root Mean Squared Error of 0.99. Kaltwang et.
al [10] incorporated facial action units and body movement
and used multiple datasets in their experiments and achieved
an RMSE of 1.69. Roy et. al [20] make use of an Active
Appearance Model and Support Vector Machine to detect
pain levels up to 4 levels with an accuracy of 82% on
the UNBC McMaster pain database [15]. UNBC McMaster
contains 17.29% of the frames labeled as pain, which can
make it difficult to learn the pain labels [6].

Motivated by these works, we propose a three-level, multi-
head deep architecture for task 1 of the FG 2020 EmoPain
Challenge [5]: Pain-related Behavior Analysis. The main
contributions are 3-fold, and can be summarized as follows.

1) We propose a multi-head deep architecture that uses
three level of training, to detect pain.

2) An ablation study is performed to evaluate the impact
of each level, of the proposed architecture, on the
accuracy of detecting pain.

3) Proposed architecture is evaluated using Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE),
Pearson Correlation Coefficient (PCC), and Concor-
dance Correlation Coefficient (CCC). We report results
comparable to the FG 2020 EmoPain baseline results.

II. THREE-LEVEL MULTI-HEAD ARCHITECTURE

A. Motivation for Architecture

We propose a multi-head approach [17], for detecting
pain, that undergoes three levels of training. Chu Y et. al
[3] explains the strong behaviour of multiple feature set in
detecting pain. K. Liu et. al [14] explains the overfitting
nature of weak features. Motivated by this, we propose to use
multiple feature sets for training, where each head outputs a
vector of deep features, which are then fused together. We
have chosen this architecture as multi-head architectures use
relevant information, at each level, to find the correlations
between the different data types [11].

A single-level model has to go through a higher number
of iterations to identify the best hyper parameters to produce
a low cost error. Additionally, a hierarchical structure allows
for definitive outflow of information between the levels. This
is a computationally cheaper way of regression especially
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Fig. 1: Multi-head three-layer architecture. Level 1 trains individual feed-forward neural networks for each feature type (i.e.
multi-head). Deep features are then extracted from each network and fused for input to level 2 network. At level 2, network
from level 1 is frozen, and 3 new layers are added, which are trained on fused feature vector (each feature type is represented
by a colored layer, 3 parts are a simplified representation of the extracted features) (i.e. tail). Level 3 unfreezes all layers,
and retrains entire model (i.e. level 1 and 2) for model refinement.

with the inclusion of multimodal features [21], [23]. Multi-
level modelling can also improve the interaction between
models. Given levels L1, L2, and L3, we can see the commu-
nication between them allowing us to interpret the results. At
each level, the confidence of the output by the corresponding
model increases due to the hierarchical form which makes
the predictions statistically trustworthy [17], [21]. Another
benefit is the convergence rate of the multi-level model
can be faster than a single-level. Our proposed architecture
combines the benefits of a multi-level architecture with the
positive impact that multimodal classification can have on
pain detection accuracy [27]. Motivated by the work of
Monwar et. al [18], where feed-forward neural networks
were trained on facial features, and Minetto et al. [17], that
used a multi-head network for geospatial land classification,
we create a multi-head architecture, with a lateral division
where multiple features are used as input to a regression-
based feed-forward neural network.

B. Level Hierarchy

1) Level 1: Here, we train the multi-head level of our
architecture. Each head is a feed-forward neural network
consisting of one input layer, one output layer and 2
hidden layers, where the subsequent hidden layers have
No of neurons mprewous layer neurons. The final hidden layer
was kept at 50 nodes to keep it consistent for further fusion
(i.e. output of 50 features). A batch size of 250 with 250
epochs were used. Dropout of 20% was added after each
layer to avoid over-fitting. At this level, the network is trained
for each feature (e.g. HOG features), using Adam optimizer
[12] with a learning rate of 0.01. We use RMSE as our
loss function, and the error is measured by MAE. For our
experiments, we train 4 networks, 1 for each feature type
we use (HOG, Geometric, VGG [13], and RESNET [13]).

From each network, we extract a feature vector of size 50,
from each of the fully connected layers. We then create a
new feature vector, f, of size 200 (4 x 50), by concatenating
each vector,

f= [GeometricHL3, VGGHLg, HOGH/_3, RESNETHL3], (1)

where GeometricHLg, VGGHL3, HOGHL3, and RESNETHLg
are the deep features of the geometric, VGG, HOG, and
RESNET networks, respectively. This new vector, f is then
used as input to level 2.

2) Level 2: Here, we train the tail of our proposed
architecture, which consists of the fusion layer. It has been
shown that fusion takes advantage of the underlying multi-
modal features and improves the regression abilities of the
model [21]. Considering this, we use the fused feature vector
f, from level 1, as input to the network at this level. To
construct this level, we first freeze the network layers from
level 1, and add 3 new layers (1 input, 1 hidden, and 1 output
layer). These layers are trained, for 100 epochs with a batch
size of 250, and learning rate of 0.01. Using this approach
allows for faster convergence of the network at this level
[23]. The final network weights are then saved for level 3.

3) Level 3: We consider the final level to be the model
refinement level. Here, the entire architecture (i.e. level 1 and
level 2) is retrained. The difference being, the weights of the
head are initialized to the final weights of the heads at level
1 training and the weights of the tail are the final weights
of the tail at level 2 training. At this level, we unfreeze the
layers that were frozen in level 2 (i.e. level 1 layers), and
they are trained with a learning rate of 0.001. The output of
this network is the 11-point scale frame-wise pain intensity
labels ([0, 10]) with linear activation. As we will show in
Section III-B.4, this model refinement results in a positive
impact to detecting pain. See Fig. 1 for an overview of the



proposed architecture.

III. EXPERIMENTAL DESIGN AND RESULTS
A. Dataset

In our experiments, we have used the state-of-the-art pain
related dataset EMOPain [1]. It is a multimodal, fully la-
belled dataset which has high-resolution face videos captured
from multiple cameras positioned at different locations. In
addition to facial data, full body 3D motion capture and
the electromyographic signals from the back muscles have
been captured. For our experiments, we utilize the features
extracted from the face videos. We use the following features
to conduct experiments and test our architecture- Geometric
features which are composed of headpose, 2D/3D landmarks,
Facial Action Unit [7] occurrence and Facial Action Unit
intensity, and HOG features [4]. In addition to this, two sets
of deep features have been collected namely RESNET [26]
and VGG [22].

This dataset consists of 50 participants split between 21
male and 29 female. Out of these, 22 participants (7 male and
15 female) were chronic lower back patients (CLBP) and 28
participants (14 male and 14 female) were termed healthy
patients. The mean age of CLBP patients was 50.5 while
that of healthy patients was 37.1. Subjects were labelled per
frame on a 11-point scale and the average of the all the tasks
performed (Normal or Difficult) was considered the final
label. The features were extracted from two cameras (camera
4 and camera 8). In our experiments, we have utilized both
the camera features by selecting only the informative frames
(see Section III-B.1 for details). The training data comprised
of 19 subjects (11 healthy and 9 CLBP) and the validation
data comprised of 9 subjects (6 healthy and 3 CLBP).

B. Experiments and Results: Ablation Study

To validate our proposed architecture, we conducted 3
experiments to learn how each level impacts the accuracy of
detection. (1) Experiment 1: we evaluate the accuracy of each
individual network (i.e. single modality feature vector); (2)
Experiment 2: the accuracy of the fused features in the level
2 network are evaluated; (3) Experiment 3: final accuracy
of three-level multi-head architecture is evaluated. For each
experiment, we use the following evaluation metrics: Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE),
Pearson Correlation Coefficient (PCC), and Concordance
Correlation Coefficient (CCC).

MAE is the average of the absolute difference between the
predictions and ground truth and is given by

‘(YTrue - Ypred)|

N )
where N is the total number of samples, Ve is the ground
truth, and Ypreq is the predicted value. RMSE tells us how
spread out are the data from the predicted line. It is a measure
of the difference between the predicted value and ground
truth. RMSE values are mainly used in regression inspection
to evaluate a model, and is given by
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where N is the total number of samples, Ve is the ground
truth, and Ypreq is the predicted value. The main difference
between RMSE and MAE is taking the square in RMSE
results in higher weight to a larger error.

PCC measures the linear correlation between two variables

Ypred and Yirye as

PCC = coVv(Yirue, }/pred), )
Oyie 9y, pred

where cov is the covariance between the Yyye and Ypred,
Oyme and oy, are the standard deviation of Yyye and Ypred
respectively. PCC greater than 0 implies a positive correlation
between the two variables and a PCC less than 0 implies
negative correlation. A PCC of 0 implies there is no linear
correlation between the two variables.

CCC measures the agreement between two variables as
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where p defines the correlation between the two variables,
Hyye and py,, are the means of the two variables and oy,
and oy, are the standard deviation.

1) Data Integrity: We first investigated the data to deter-
mine the frame-level details which added no value to the
training and deteriorated them (i.e. some of the training data
is inconsistently labeled). One of the main properties which
will give a clue about this is the head pose coordinates. For
some of the files, the head pose features had invalid values
in them (e.g. 10000 as head pose value, 9 digit landmark
coordinates). We have captured these details at the frame-
level and have removed them from our training set. We
mainly focus on the geometric feature vector and observe
the head pose columns to filter out the invalid rows. We
notice that for these rows, the remaining features such as
action unit occurrence and action unit intensities are zero.
We remove the corresponding rows in the remaining feature
set to maintain compatibility with our models. For testing
purposes, to ensure the final model evaluation is compatible
with the ground truth test labels (for calculation of RMSE,
MAE etc), our predictions per subject will match the pain
labels frames of the subject. We adopted the following rules
to fill missing labels from invalid frames.

« For any continuous missing frames, obtain the predicted
label of the frames before and after the invalid values
and take the weighted average of the predictions. Fill
the missing labels with the new weighted average.

o For frames which have been removed from the end, fill
the rows with the last valid frame prediction.

We refer to the inconsistent data as iData (invalid data),
and vData (valid data). As can be seen in Table I, the invalid
data has a negative impact on detecting pain. One of the
reasons for invalid frames can be attributed to the exercise
being performed. For example, for exercises that requires the



TABLE I: Pain detection results, from each level of proposed architecture, on the EmoPain [1] validation and test sets.

RMSE MAE PCC CcCcC
Phase Level Model vData iData vData iData vData iData vData iData
HOG 1.8680 | 1.8840 | 1.0030 | 1.0300 | -0.0680 | -0.0620 | -0.0470 | -0.0050
Geometric 1.8220 | 1.8480 | 0.7970 | 0.8230 | -0.0120 | 0.0560 | -0.0070 | -0.0060
Level 1 RESNET 1.8840 | 1.8620 | 0.8790 | 0.8890 | -0.0400 | -0.0400 | -0.0300 | -0.0300
VGG 1.7970 | 1.8800 | 0.8850 | 0.8960 | 0.0500 0.0300 0.0300 0.0300
-\\o0 Fusion (All 4 features) 1.8610 | 1.8800 | 1.0900 | 1.2300 [ -0.0670 | -0.0690 | -0.0540 | -0.0520
'\\5} Level 2 Fusion (Geo + VGG) 1.7800 | 1.8400 [ 0.7550 | 1.2400 | -0.0400 | 0.0020 | -0.0200 | -0.0300
i Retrain (All 4 features) | 1.7800 | 1.8700 | 0.8000 | 0.8600 | -0.0090 | -0.0010 | -0.0310 | -0.0310
Level 3 Retrain (Geo + VGG) 1.6740 | 1.7900 [ 0.7320 | 0.7500 | -0.0090 [ -0.0100 | -0.0010 | -0.0020
Baseline [5] Fusion 1.6900 1.2600 0.2500 0.1800
& Fusion 5.4800 0.8550 0.0034 0.0240
N\ Baseline [5] 1.4100 0.9100 0.1000 0.0600

patient to bend forward, only camera 8 data is active. The
data present in camera 4 can be considered invalid. Another
reason might be the data simply wasn’t captured for some of
the frames. Since we are considering both the cameras for
our prediction, we are removing the invalid frames from both
the camera 4 and camera 8 to maintain consistency across the
cameras. For the 3 experiments, detailed below, the invalid
data is removed from training.

2) Experiment 1: We evaluated the accuracy of the in-
dividual networks of level 1. As detailed in Section II-B.1,
the loss function was RMSE and the network accuracy was
monitored as MAE for training our networks, however, for
the challenge, we also calculated PCC, and CCC scores from
the results of each network (Table I). VGG features had the
lowest RMSE, and highest PCC and CC scores with 1.797,
0.05, and 0.03 respectively. For MAE, geometric features
had the lowest error with 0.797. While these features were
the best for the individual metrics, all features had relatively
stable performance. The standard deviation, across the four
features, for RMSE, MAE, PCC, and CCC were 0.04, 0.08,
0.05, and 0.03, respectively. This shows a small amount of
variation in accuracy between each of the features.

3) Experiment 2: In experiment 1, we wanted to evalu-
ate the accuracy of each individual feature type. Here, in
experiment 2, we analyze our multimodal approach (i.e.
fusion) to detecting pain. Considering this, we calculate
the RMSE, MAE, PCC, and CCC scores for the fusion
of all modalities (HOG, Geometric, RESNET, and VGG),
which are 1.861, 1.09, -0.067, and -0.054, respectively. For
all evaluation metrics, the fusion of all of the modalities
resulted in decreased performance. Considering this, we
also evaluated the top features for level 1, which were
Geometric (MAE), and VGG (RMSE, PCC, and CCC). To
evaluate these features, we performed a separate fusion of
just those deep features (i.e. from the output of level 1), and
subsequently trained level 2 on these fused features. This
resulted in an RMSE, MAE, PCC, and CCC of 1.78, 0.755,
-0.04, and -0.02, respectively. This resulted in an overall
higher PCC and CCC score compared to level 2, and lower
RMSE and MAE error compared to both level 1, and the
fusion of all features at level 2. These results can partially be
explained by using RMSE as the loss function and evaluating
the accuracy of our networks with MAE.

4) Experiment 3: The final experiment was done to eval-
uate the impact of model refinement (i.e. level 3). Here we
conduct the same experiments as done for level 2 (fusion
of all features, as well as fusion of Geometric and VGG
features). When fusing all features, the model refinement
level results in an RMSE, MAE, PCC, and CCC of 1.78,
0.8, -0.009, and -0.031, respectively. Similar, to level 2 ex-
periments, fusing only geometric and VGG features resulted
in a positive impact for RMSE, MAE, and CCC with 1.674,
0.732, and -0.001, respectively. For the CCC score, model
refinement resulted in the same score as level 2 (-0.009).
At level 1, an average RMSE of 1.843 was achieved across
all features types. With model refinement at level 3, RMSE
was decreased by 0.169, showing improved accuracy for
detecting pain. Similar positive refinement can be seen for
the other evaluation metrics compard to the average of the
four features. MAE resulted in a decrease of error by 0.159;
CCC scores and PCC scores increased by 0.0085 and 0.0125,
respectively. These results are encouraging, improving upon
the baseline results for RMSE and MAE, and showing
comparable PCC and CCC scores (Table I).

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed a multi-head, multi-level ar-
chitecture for task 1 of the FG 2020 EmoPain challenge.
The proposed architecture incorporates multimodal data, that
captures the underlying details of the features, for predicting
the pain on an 11 point scale. We have validated the proposed
architecture by performing an ablation study showing that
the multimodal approach outperforms a single modality and
network. We facilitated this evaluation by comparing the
RMSE, MAE, PCC, and CCC values of individual models
against the proposed architecture and observed lower error
values and higher correlations on average. We have shown
that the RMSE and MAE values of our model outperform
the baseline, and the PCC and CCC scores are comparable.
As part of future work, we will utilize camera 4 and camera
8 as separate models and apply an ensemble approach [19]
on both. Each head can provide a probability of the output
which can be the confidence of the output.
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