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Abstract— In this paper, we present our approach to the
FG 2020 EmoPain Challenge for tasks 2 (pain estimation) and
3 (protective behavior detection) from multimodal movement
data. We propose to perform sequential protective behavior
detection and pain estimation using human movement infor-
mation. First, we predict the existence of pain, and then use
this information along with the multimodal movement data for
protective behavior detection. Finally, this information is fused
to estimate level of pain. In this work, we apply both early fusion
(feature fusion including metadata, modalities, exercises and
probabilities) and post-fusion (decision fusion). The proposed
approach is encouraging, as it outperforms the baseline, with
high margin for both pain estimation and protective behavior
detection on the EmoPain challenge 2020 dataset.

I. INTRODUCTION

To improve the quality of life for patients with chronic
pain (e.g. chronic lower back pain), rehabilitation is neces-
sary [8]. In observing this pain, Keefe et al. [13] identified
guarding, rubbing, bracing, grimacing, and sighing as five
distinct categories. Along with this, Sullivan et al. [21] iden-
tified the functional category known as protective behavior,
which we detect in this work. People that suffer from this
often perform safety-seeking behavior (i.e. protective) and
this behavior can also be measured using muscle activity
[2], which is a motivating factor behind this work.

From a clinical standpoint, pain assessment is a critical
task for patient well-being [20]. Coupled with the inability
of some patients to describe their pain [9], automatic methods
to detect pain become vital. Considering this, there has been
encouraging progress made to develop automatic solutions
to detecting pain [2], [17], [18], [24]. Aung et al. [1] investi-
gated the protective behavior, guarding, which is commonly
found in those with chronic lower back pain (CLBP). They
used an ensemble of random forests on posture and velocity
data, showing encouraging results on motion capture and
electromyographic data [5]. Olugbade et al. [16] detected
levels of pain (low, medium, and high) by fusing body motion
and muscle activity and training a Support Vector Machine
(SVM). They showed that a multimodal approach led to
higher classification compared to body motion or muscle
activity alone. Wang et al. [23] also detected protective be-
havior using MoCap and EMG data. They investigated using
a dual-stream long short-term memory (LSTM) network, as
well as stacked LSTM. Their results suggest that using a
stacked LSTM approach can facilitate the development of
wearable technology to support pain rehabilitation. Along
with pain detection, motion data has also been successfully

applied to predicting stress and meditation states [22], further
showing the utility of this type of data for helping improve
quality of life. Aside from motion data, another interesting
modality, for detecting pain, is physiological data (e.g. blood
pressure, respiration). Fabiano et al. [10] showed fusing
physiological data can be used to accurately detect pain. They
investigated the BP4D+ dataset [25], showing robustness to
multiple machine learning algorithms.

Motivated by these works, we propose a sequential ap-
proach to detecting protected behavior, as well as estimating
pain. To facilitate the detection of protected behavior, we
propose to fuse human movement data along with pain
detection results. Given this detection, we then propose
to fuse movement data, the results of pain detection, and
protective behavior detection to estimate the level of pain.
To show the effectiveness of the approach, we conducted
an ablation study of the modalities available in the emoPain
movement dataset [2] by exploring the modalities separately
and by combining them (early fusion). We also explore
decision fusion and show that this type of fusion can preserve
the competitive performance of the model while improving
classification diversity [11]. The main contributions, of this
work, can be summarized as follows.

1. This work proposes a multimodal, multilevel fusion
approach for sequential protective behavior detection
and pain estimation using human movement data.

2. An ablation study is conducted showing the effec-
tiveness of the proposed approach. We analyze the
modalities separately to compare against our proposed
fusion approach.

3. Proposed approach outperforms baseline results on the
EmoPain Challenge 2020 [3] validation and test sets,
for protective behavior detection, and pain estimation.

II. SEQUENTIAL PROTECTIVE BEHAVIOR AND PAIN
PREDICTION

In this work, we propose a multimodal, multilevel fusion
model to detect protective behavior and to estimate pain
intensity levels sequentially. Using metadata, mocap, EMG,
and exercises (i.e. feature vector in V1), we first detect the
existence of pain. We then merge the outcome of the pain
detection model with the feature vectors (e.g. F1) in V1,
which creates new feature vectors in V2. In this step, we use
V2 to detect protective behavior (PB). Our final task is pain
estimation in which we use the combination of the outcome



Fig. 1. Sequential protective behavior detection and pain estimation framework. Here, F,M , and PP indicate features (modalities), models, and post-
processing. For example, Mi indicates a model (e.g. random forests) trained on feature set Fi (see Table I).

TABLE I
FEATURE VECTOR COMBINATIONS. EACH ROW REPRESENTS ONE

FEATURE VECTOR. EACH COLUMN REPRESENTS ONE VERSION OF THE

FEATURE VECTOR. MORE PRECISELY, IN (FEATURE VECTOR) VERSION

V1 , WE HAVE 7 DIFFERENT COMBINATION OF METADATA, MOVEMENT

DATA, EXERCISES, WHICH CONSTRUCT 7 UNIQUE FEATURE VECTORS.
TO CONSTRUCT V2 , WE APPEND PAIN DETECTION PROBABILITIES (PDP )

TO THE V1 . FINALLY, IN V3 , PB DETECTION PROBABILITIES (PBP ) IS

APPENDED TO THE V2 . NOTE THAT MD, ANG, ENG, EX INDICATE

METADATA (E.G. PATIENT OR HEALTY SUBJECT, NORMAL OR DIFFICULT

EXERCISE), ANGLES, ENERGIES, EXERCISES, RESPECTIVELY.

Index V1 V2 V3

1 F1 = {MD, ang, ex} {F1, PDp} {F1, PDp, PBp}
2 F2 = {MD, eng, ex} {F2, PDp} {F2, PDp, PBp}
3 F3 = {MD, EMG, ex} {F3, PDp} {F3, PDp, PBp}
4 F12 = {MD, ang, eng,

ex}
{F12, PDp} {F12, PDp, PBp}

5 F23 = {MD, eng, EMG,
ex}

{F23, PDp} {F23, PDp, PBp}

6 F13 = {MD, ang, EMG,
ex}

{F13, PDp} {F13, PDp, PBp}

7 F123 = {MD, ang, eng,
EMG, ex}

{F123, PDp} {F123, PDp, PBp}

of the PB detection model with feature vectors in V2 as input
feature vector (see Figure 1).

A. Pain Detection Model

An XGBoost classifier [7] is trained using feature vector
F123 (fusion of metadata (subject type, exercise difficulty
type), exercises, mocap, and EMG data) in V1 as shown
in Table I. We extract the class probabilities of pain and
neutral classes from the XGBoost pain detection model and
merge the probabilities with each feature vector in V1 to get
new feature vectors in V2. Knowing the existence of pain
may boost the performance of the PB detection model since
people are likely to show protective behavior in the presence
of pain, although there is no direct relationship between them
[15] [19].

B. Protective Behavior Detection Model

For protective behavior detection, we apply multimodal,
multilevel fusion by performing both feature fusion and
decision fusion. We build a set of models using several
combinations of input data, using the combinations shown
in Table I. For instance, to build model Mi (e.g. M1), we
use ith feature vector from V2 by combining Fi (e.g. F1) and
pain detection probabilities (PDp). For protective behavior
detection, we use the XGBoost classifier, in which we put

more weight on the protective behavior class (positive class)
because the protective behavior class is less representative in
the dataset. The weight parameter W of XGBoost classifier
is optimized by

W =
√
Nc/Pc, (1)

where Nc and Pc represent the total number of training
samples belonging to the neutral class and positive (e.g.
protective behavior (PB)) class, respectively. It can be in-
ferred by merging the information from Figure 1 and Table
I that we build 7 classifiers for PB detection using V2

(the combination of feature vector Fi in V1 in Table I
and pain detection probabilities). We then, for two different
submissions (submission 2 and 3), perform two different
types of late decision fusion such as averaging and majority
voting, to incorporate diversity [11] in the classification
results, which could be useful to deal with domain shift
[14]. In the case of averaging, we first select k number of
competitive models (in terms of PB detection performance)
from the 7 trained PB detection models, and then we extract
the probabilities of a given sample belong to PB class from
those k models and compute the mean of the probabilities. If
the mean probability is greater than or equal to a threshold
t, we classify the sample as PB, otherwise, we classify the
sample as neutral. On the other hand, in the case of majority
voting, after making the inference using the 7 PB detection
models for a given sample, we perform a vote on top of
the inference and we finally classify the sample as PB if
at least 4 classifiers classify the sample as PB, otherwise,
we classify the sample as neutral. Note that we train and
perform inference using our classifiers at each time step
(frame), while the EmoPain challenge 2020 makes inference
at the segment level using a sliding window of 180 timesteps
with 75% overlapping time steps (frames). Hence, we post-
process the results we obtain in each timestep to mimic the
challenge evaluation setting. We use the same segmentation
approach as the challenge, to map 180 class labels (for 180
samples) to 1 label.

C. Pain Estimation Model

We perform multimodal, multilevel fusion for pain estima-
tion as well, using V3 which is the combination of V1, the
output of the pain detection model and PB detection model
(see Figure 1 and Table I). Note that out of 7 PB detection
models, we only use the outcome of the PB detection model
M123 since M123 is trained on all sources of information
including metadata, mocap (angle, energy), EMG, exercise
and pain detection probabilities. Note that the level of



pain (low and high) classes (compared to neutral) are less
representative in the dataset; as a consequence, we perform
oversampling of the training dataset using synthetic minority
over-sampling technique (SMOTE) [6]. For pain estimation,
we train both random forests [4] and XGBoost [7] classifiers
using all possible (7) combination of modalities (see Table
I). Thus, we have 14 pain estimation models in total. Next,
we perform late fusion via decision aggregation. To do so,
we select k competitive models (in terms of pain recognition
performance) from all trained (14) pain estimation models.
More precisely, we extract the output (numeral pain level) of
k models and compute the mean of the outputs (outputm).
Then, we use thresholds t1, t2 to get the final pain estimation
as highlighted in Eqn. 2 and Eqn. 3.

outputm =
[ k∑

i=1

outputi

]
/k (2)

ePain =


0 if 0 ≤ outputm < t1

1 if t1 ≤ outputm ≤ t2

2 if t2 < outputm ≤ 3

(3)

Note that our approach operates at each time step (frame).
Hence, to get exercise instance level pain estimation (to
mimic EmoPain challenge evaluation setting), we perform
post-processing in which we apply majority voting over
estimated pain for all of the time steps (samples) that belong
to respective exercise.

III. EXPERIMENTS AND ANALYSIS

Dataset. The emoPain dataset [2] is a multimodal pain
dataset that contains visual, body movement and EMG data.
The authors captured both pain intensity and protective
behavior of subjects (both healthy and patient with CLBP)
aged in between [19, 67] (mean: 50.5 years). The subjects
performed a set of physical exercises (e.g. walking, bend
down, one leg stand, sit-to-stand) to elicit pain and protective
behavior. The public release version of the dataset contians
observer report of pain intensity and protective behavior.
Note that in case of labeling pain intensity for the movement
portion of the dataset, a subset of the samples was labeled
as ”Not reported”. In our experiment, we transformed those
samples (in training dataset) to ”neutral” to augment the
training dataset. For detailed information about the dataset,
we refer the readers to Aung et al. [2].

Model validation and performance evaluation. In this
work, we used the evaluation metrics Matthew’s correlation
coefficient (MCC) [12], F1-score (F1-score for each class,
and mean F1-score), and accuracy. MCC is quite useful in
this problem since it can take care of both positive and
negative classes. During pain detection and PB detection,
we performed leave-one-subject-out (LOSO) validation, and
we extracted the detection results of the leave-out subject
which was later used to train models (e.g. pain detection
results → PB detection model, and pain detection and PB
detection results → pain estimation model). For comparison
with the baseline, we reported results on the validation and

test partitions of the dataset. For the test set, we reported
results of submitted models only (3 PB detection and 3 pain
estimation models) as we did not have access to the test set.

Pain detection. We trained an XGBoost classifier to
classify pain from no pain (neutral) using feature set F1 in
V1 (see Table I). The class weight W was optimized (Eqn.
1) and we set the number of estimators, and learning rate
to 200, and 0.1, respectively. The proposed model was able
to classify pain samples from neutral samples with 100%
accuracy with the inclusion of metadata and exercises with
angles, energies and EMG data. Knowing the existence of
pain is likely to boost the performance of PB detection
models as well as pain estimation models as it is well-
known that there is a co-occurance relationship between pain
and protective behavior [2]. Hence, we extracted the class
probabilities of the XGBoost-based pain detection model to
feed in to the PB detection and pain estimation models.

Protective behavior detection. All 7 XGBoost classifiers
for PB detection had 200 trees (estimators), class weight of
W = 4 (Equation 1) and learning rate of 0.1. The parameter
values were selected empirically to trade-off between training
time and predictive performance. As can be seen in Table
II, we obtained competitive results using M2, M3, M23,
and M123 models. As a result, for our final submission, we
used the M123 model and two fusion models. The submitted
models outperformed (with high margin) the baseline results
provided by the emoPain Challenge 2020 (see Table II). For
submission 2 (mean fusion), we selected the M2, M3, M23,
and M123 models as the top k(= 4) models, to obtain the
final outcome. For submission 3, we selected all 7 models
and performed majority voting to achieve the final outcome.
The goal of the fusion models is to incorporate diversity [11]
in terms of classification. From Table II, we observe that,
on validation set, fusion preserved the competitive model
performance while incorporating diversity in terms of clas-
sification, while on test set (unknown dataset), fused models
outperformed single model, which validates our assumption
that on unknown shifted samples fusion could be better
choice than single model, as well as PD detection improving
the PB detection results due to co-occurance relation.

Pain estimation. We trained 7 random forest and XG-
Boost classifiers using each feature vector in V2 in Table
I and the method described in Section III. To alleviate
class imbalance issues, we oversampled the training par-
tition of the dataset using SMOTE [6]. For both clas-
sifiers, we set the number of estimators (trees) to 200,
and for XGBoost classifier, we set learning rate to 0.1.
To preserve performance and to incorporate classification
diversity, we performed a late fusion of top k pain es-
timation models. For submission 1 (pain estimation), we
fused random forests based pain estimation models M23

and M123 trained on feature vectors {F23, PDp, PBp}
and {F123, PDp, PBp} using the approach described in
Section III. We set threshold t1 = 0.9 and t2 = 1.5.
For submission 2, we selected k = 8 models for fu-
sion, where we used {F2, PDp, PBp}, {F3, PDp, PBp},
{F23, PDp, PBp}, and {F123, PDp, PBp} to train XGBoost



TABLE II
PB DETECTION RESULTS. F1M , F1N , AND F1PB REPRESENT MEAN F1 SCORE, F1 SCORE OF NEUTRAL AND PB CLASSES, RESPECTIVELY. NOTE THAT

PB DETECTION MODELS WERE TRAINED USING V2 , FOR EXAMPLE, M1 WAS TRAINED USING {F1, PDp} IN V2 AND SO ON.

Validation set Test set

Model MCC F1m F1n F1pb Accuracy MCC F1m F1n F1pb Accuracy

Baseline [3] - 0.48 0.96 - 0.46 - 0.57 0.9 0.25 0.83
M1 0.29 0.62 0.91 0.32 0.84 - - - - -
M2 0.427 0.68 0.93 0.44 0.88 - - - - -
M3 0.411 0.68 0.94 0.43 0.89 - - - - -
M12 0.282 0.62 0.91 0.32 0.85 - - - - -
M23 0.465 0.72 0.95 0.49 0.91 - - - - -
M13 0.283 0.61 0.91 0.32 0.84 - - - - -
M123 (submission 1) 0.45 0.72 0.96 0.48 0.93 0.59 0.78 0.96 0.61 0.92
Mean fusion (submission 2) 0.45 0.71 0.95 0.48 0.91 0.66 0.81 0.96 0.67 0.93
Majority voting (submission 3) 0.42 0.7 0.95 0.45 0.9 0.63 0.81 0.97 0.65 0.94

TABLE III
PAIN ESTIMATION RESULTS. F1M , F1N , F1LP , AND F1HP REPRESENT F1 SCORES - MEAN, NEUTRAL, LOW, AND HIGH LEVEL PAIN CLASSES.

Validation set Test set

Model MCC F1m F1n F1lp F1hp Accuracy MCC F1m F1n F1lp F1hp Accuracy

Baseline [3] 0.02 0.31 0.39 0.09 0.44 0.34 - - - - - -
M1 (random forests) 0.62 0.51 1 0.53 0 0.85 - - - - - -
M2 (random forests) 0.83 0.72 1 0.82 0.33 0.93 - - - - - -
M3 (random forests) 0.82 0.72 1 0.81 0.34 0.93 - - - - - -
M12 (random forests) 0.64 0.52 1 0.57 0 0.86 - - - - - -
M23 (random forests) 0.86 0.74 1 0.86 0.37 0.94 - - - - - -
M13 (random forests) 0.63 0.52 1 0.55 0 0.85 - - - - - -
M123 (random forests) 0.9 0.79 1 0.91 0.47 0.96 - - - - - -
M1 (XGBoost) 0.63 0.52 1 0.53 0.03 0.85 - - - - - -
M2 (XGBoost) 0.74 0.65 1 0.66 0.30 0.89 - - - - - -
M3 (XGBoost) 0.79 0.71 1 0.76 0.36 0.92 - - - - - -
M12 (XGBoost) 0.62 0.52 1 0.49 0.06 0.84 - - - - - -
M23 (XGBoost) 0.78 0.69 1 0.73 0.34 0.91 - - - - - -
M13 (XGBoost) 0.64 0.53 1 0.56 0.03 0.86 - - - - - -
M123 (XGBoost) 0.87 0.78 1 0.87 0.48 0.95 - - - - - -
Submission 1 0.91 0.79 1 0.92 0.46 0.97 - - 1 0.25 0.14 0.45
Submission 2 0.86 0.77 1 0.86 0.44 0.95 - - 1 0.26 0.21 0.45
Submisison 3 0.87 0.79 1 0.87 0.49 0.95 - - 1 0.27 0.27 0.45

and random forest classifiers (Figure 1). For submission
3, we selected 3 random forest-based models (trained on
{F2, PDp, PBp}, {F23, PDp, PBp}, {F123, PDp, PBp})
and 2 XGBoost based models (trained on {F3, PDp, PBp},
{F123, PDp, PBp}) for fusion. Our assumption is that under
uncertainty (unknown test dataset), the fusion of models
is likely to perform better than a single model. As it can
be seen in Table III, our method produced an MCC value
of 0.91 that outperformed the baseline results by 0.89. It
also resulted in an accuracy of 0.97, outperforming the
baseline by 0.63. Note that MCC score reported in the
validation set was computed in multiclass setting. On test set,
MCC was computed for each class by emoPain (challenge
2020) organizer, our proposed model obtained MCC of
(1, 0.28, 0.21;mean = 0.5), (1, 0.29, 0.25;mean = 0.51),
and (1, 0.3, 0.3;mean = 0.53) for neutral, low level and
high level pain, respectively, using submission 1, submission
2 and submission 3. Notice that pain estimation results on
test set are comparatively worse than results on validation set.
One potential reason could be domain shift [14], where the
test set has a different distribution compared to the training

and validation sets.

IV. CONCLUSION

We have detailed our proposed approach to the EmoPain
challenge 2020 at IEEE FG 2020 for tasks 2 and 3. Our
approach is a sequential multimodal, multilevel approach
to detecting protected behavior, as well as pain estimation.
The proposed approach outperforms the baseline, showing
the utility of the proposed approach for pain detection. We
have also shown that the proposed fusion is necessary, as
it outperforms single modalities for the task. An interesting
finding, from this work, is that the incorporation of exercise
type improves the performance of models. This can partially
be explained by the association between exercise type and
certain body movements. As rehabilitation is important for
those with chronic pain, this work can help facilitate au-
tomatic approaches for helping with this, and ultimiately
improving quality of life.
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