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Abstract— Autism affects as many as 1 in 44 youth, with
many higher-functioning children not diagnosed until school-
age or later. Currently, diagnosing autism is a lengthy process
often delivered in varying settings (i.e., context) by a multi-
disciplinary team, where the result can include subjective
bias. Automatic approaches that can help professionals with
diagnosis can result in earlier and quicker diagnosis. To help
facilitate development of automatic approaches, we present a
new, context-based dataset for analysis of videos of autistic chil-
dren. The data was collected from 14 children, using the gold-
standard RITA-T evaluation. Along with the dataset we also
provide a baseline, context-based approach for classification
of these videos. The baseline shows encouraging results that
context matters for classification, and we also detail findings
about which features (face, body, or gaze) are most encouraging
within those contexts.

I. INTRODUCTION

Autism affects as many as 1 in 44 youth [1], with many
higher-functioning children not diagnosed until school-age or
later [51]. Significant impairment in social-communication,
adaptive, and school functioning is common, and compared
to other types of pediatric psychopathology, autism is partic-
ularly severe and longstanding [5]. While the importance of
early diagnosis and intervention (e.g., 12-48 months) is well
established [10], [14], [51], the average age of diagnosis of
autism is currently between 4 and 5 years [51], greatly de-
laying access to intervention during a critical developmental
period [10] associated with the most significant treatment-
related gains in cognitive, language and adaptive skills [43].
Research has documented the importance of studying these
behaviors, as well as the need to understand the development
of typically developing children to find any deviations [36].

There is a wealth of information in the medical literature
on diagnosing autism. For example, Frazier et al. [16] found a
reliable pattern of gaze abnormalities for autistic individuals,
suggesting a problem with selecting socially relevant versus
irrelevant information. Helminen et al. [19] suggested autistic
children lack the perceptual detection advantage of direct
gaze and fail to respond to gaze with enhanced physio-
logical orienting. Weiss et al. [45] looked at facial action
units and found the autistic subjects had less differentiated
facial responses, showing that reduced facial expressivity is
characteristic of autistic subjects. Bishop et al. [4] showed
that adults that were previously diagnosed with a language
condition as children would have been given a diagnosis of
autism with contemporary approaches to diagnosis, showing
language is an important modality for diagnosis of autism.
Park et al. [34] conducted a review on our understanding of
autism, detailing that along with facial expression and gaze,
body, head pose, and gestures are associated with repetitive

behaviors such as body rocking and hand flapping.
Recent works for classifying autistic subjects often focus

on brain scan data, and computer vision techniques (e.g.,
expression and gaze). For example, Kong et al. [25] looked
at the connectivity between regions of interest (ROI) among
brain scans. Bi et al. [3] used Random Support Vector
Machine Clustering on resting-state functional MRI data.
Similarly, Niu et al. [33] looked at the same data as Bi et al.
They developed a multichannel deep attention neural network
which showed better performance on the data. Seminal work
by Rehg et al. [35] collected video, audio, physiological
recordings, scoring datasheets, and parent questionnaires to
analyze the social behavior of children. They presented base-
line analyses of decoding social behavior of children, which
showed they could reliably predict child social data with
multiple modalities (although each modality was investigated
individually). The research also resulted in a new multimodal
dyadic behavior dataset consisting of adult-child social in-
teractions. Rudovic et al. [37] showed that the intensity of
engagement could be predicted in autistic children. This was
done using facial expression and deep learning. Drimalla et
al. [12] proposed a multimodal approach to detecting autism
and showed that the combination of audio, video, and gaze
features could increase the accuracy of detection. Jiang et
al. [22] classified autism using facial expression and eye
gaze. Samad et al. [41] analyzed facial action units to show
that autistic subjects frowned more and had low correlations
in temporal activations compared to their typically develop-
ing peers. Li et al. [28] used action units, facial expression,
arousal, and valence to classify autism automatically using
a convolutional neural network. Along with these works,
there are interesting works on analyzing family home movies
of autistic infants. Saint-Georges et al. [39], conducted a
literature review of this. They detailed 18 studies showing
the signs that differentiate autistic children from those with
developmental delays. This includes, but is not limited to,
less looking at others, lower eye contact quality, and less
positive facial expressions. This also motivates the current
study to use gaze and face modalities.

There has also been recent significant work in video
understanding, which we propose to do here for autistic
children. Wang et al. [44], analyze videos of human subjects
to extract real-time 3D pose estimation. They propose to
predict both real and virtual bones simultaneously. Luo et al.
[30], investigated referring video object segmentation. They
proposed Semantic-assisted Object Cluster which combines
video and text data for cross-modal alignment. Along with
video understanding, data is also an important aspect of ana-
lyzing video of autistic children. Unfortunately, the datasets
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used are often not publicly available [37], [12] due to the
sensitive nature of the data. Along with this, the tasks used
for data collection are often not directly related to autism
(e.g., general tasks meant to elicit emotion [22]). While
there are some publicly available datasets, they also have
limitations such as general tasks not specifically related to
autism [50], or the publicly available dataset from Pandey et
al. where the control class was picked from another dataset
[26] with different tasks. Considering this, our proposed
dataset has the following extensions to state of the art. (1)
The RITA-T autism screening test [9] was used for data
collection; (2) Both autistic and control subjects took part
in the same RITA-T screening; and (3) The videos are
context-based (each separate RITA-T task). To summarize,
the contributions of this work are 3-fold:

1) A new, publicly available, context-based dataset of
children with low and high risk for autism is proposed.

2) A context-based baseline approach to classifying
videos of children with risk of autism is proposed.

3) An analysis of how different modalities impact classi-
fication is given.

II. DATA AND COLLECTION

A. Participants and Recruitment

Participants included 14 toddlers ages 20-36 months (M =
27 months) who participated in a pilot study of the impact of
multimodal data on autism risk diagnosis. Participants were
recruited from two pediatric clinics in one medical building
at a large university medical center in Tampa, FL. The first
clinic was the local Part C early intervention program for
children birth-3 years with documented developmental delays
(DD). Children in this clinic were either participating in an
initial eligibility evaluation or a comprehensive evaluation
for autism. Children presenting for autism evaluation had
already been found eligible for the Part C program at a prior
appointment due to documented developmental delays. The
second clinic was a primary care clinic to which children
presented for sick or well-child visits. Study participants and
their caregivers presenting to one of the two previously de-
scribed clinics were approached by the attending healthcare
provider at the conclusion of their scheduled visit as long as
they met all inclusion criteria: 1) toddlers ages 20-36 months;
2) child must be able to sit up and move arms in response
to the presentation of toys; 3) Child must have adequate
vision/hearing so their responses to examiner social bids/toys
can be assessed; and 4) Caregiver must be 18 years or older.
The provider showed the caregiver a study flyer and briefly
explained the study goals and asked if the caregiver would
like to hear more information about the study. Data were not
collected on the number of families who declined further
study information. If the caregiver was interested in further
details, the provider texted a study co-PI (psychologist) to
come and get the family. The psychologist accompanied the
family to a private evaluation room and explained the study.
The psychologist was not blinded to the child’s appointment
type and thus, was aware if the child had presented for
an autism evaluation. However, the psychologist did not
have the evaluation results prior to the screening. Of the 14

caregivers who wanted more information, 100% consented
to the study.

Over seven screening dates, we consented and enrolled
6 children with DD + autism from the Part C program, 6
children with DD only (5 from Part C and 1 from primary
care), and 2 who were typically developing from the primary
care clinic. Among them, 57% were Hispanic/Latino, 29%
identified as non-white, and 28% were female suggesting
oversampling among diverse individuals and females who
have autism+DD. While the sample size was small, pilot
studies serve to identify and address issues that could occur
with respect to future study conceptualization, study design,
data collection, data management, and data analysis [31]. In
addition, the difference in effects we find in pilot studies can
be used to plan future power and sample size of a larger trial.

B. Collection Procedures
The Institutional Review Board at the University of South

Florida approved this study and written informed consent
was obtained for all participants. The child participant com-
pleted the Rapid Interactive Screening Test for Autism-
Toddlers (RITA-T) with the study psychologist while the
caregiver watched and completed a demographic form. The
caregiver sat beside the child to ensure the child was com-
fortable and to redirect the child to their seat as needed. To
address toddler movement, we structured the room as fol-
lows: 1) used a small room to minimize space for movement;
2) limited distractions in the room (e.g., walls were bare,
devices on silent); 3) positioned the camera out of child’s
reach; 3) provided a sturdy chair for child with child booster
seat; 4) positioned child chair directly next to caregiver; 5)
once child was seated, they were scooted close to the table;
6) evaluation began immediately upon placing the child in
the chair to minimize lag time; 7) if the child demonstrated
need to leave the chair, the child was provided a brief 15
second break and then physically and verbally redirected to
chair with caregiver assistance; 8) child received constant
verbal and tangible reinforcement through play for on-task
behavior (e.g., sitting in chair, looking at stimulus).

We were able to collect data accounting for child move-
ment, straying from the chair to roam the room, or a child
turning toward caregiver for feedback. Child movement did
not affect our ability to collect multimodal data and in our
experience, children are easily redirected to the seat after a
brief break.

The examiner prompted children through the tasks and
recorded their responses on a record form. The assessments
averaged 6-10 minutes. Upon completion of the assessment,
caregivers were offered a choice of toys (value under $20)
and given a copy of the consent form. Caregiver questions
were answered and then they were instructed that the as-
sessment was completed and thanked for their time. Finally,
the psychologist reviewed each child’s medical record and
completed the fidelity checklist as described below.

There are 14 videos that were collected using a Logitech
HD Pro C920 webcam placed from a high angle to capture a
range of child behaviors (e.g., facial expression, eye contact,
gesture) that occurred as part of the RITA-T assessment and
form the basis for the multimodal dataset (See Fig. 1).



(a) Toy blocking. (b) Object tease. (c) Blocked vision. (d) Magic ball. (e) Color constancy.

(f) Object vs face. (g) Rapid joint attention. (h) Sad face, still face. (i) Recognition.

Fig. 1: Samples subjects from dataset for each task (context). Note: these images also show samples used for the proposed
body movement experiments. As can be seen in these images, the subjects are varied in their expressions, gaze, and body
movement. This variation results in a challenging, real-world dataset.

TABLE I: Constructs assessed, behaviors observed, and rationale for sample RITA-T tasks A-D. Facial expressions, eye
gaze, and body movement are behaviors observed in these tasks. Tasks E-I (not shown here) elicit different behaviors in
expression, gaze, and body as well.

Task and Construct Assessed Behaviors Observed Rational for Task
(A) Toy blocking: social awareness and aware-
ness of human agency

Eye contact and latency with examiner; Eye
contact only with hand holding toy or give up
on task

TD child looks to face/eyes to understand blocking;
Autistic child will look at hand, give up, or look at
face after prolonged period

(B) Object tease: social awareness and joint
attention

Eye contact with examiner; Eye contact with
caregiver; Eye contact with both examiner and
caregiver; Eye contact only with hand holding
toy or give up on task

TD child looks to face/eyes when teased; Autistic
child will look at hand, or give up

(C) Blocked Vision: joint attention, awareness
of human agency

Eye contact with examiner; Latency of eye con-
tact with examiner

TD child looks to face/eyes of person blocking toy;
Autistic child will continue to look at mirror and
not look at person blocking

(D) Magic Ball: cognition, joint attention Surprised reaction: facial expression, vocaliza-
tion, gesture; Seeking object: eye contact, ges-
ture, vocalization; Joint attention to caregiver or
examiner

TD child searches for ball, amused by disappearance
and look to caregiver/examiner; Autistic child keeps
looking at empty cup, look for ball, give up, or not
look at examiner

C. Collection Measures

Demographics. Caregiver and child demographic data
were collected with a program specific demographic form.

RITA-T. The RITA-T [9] is a 9-item semi-structured play-
based screening measure that looks at constructs that are
impaired in autistic children including: joint attention, visual
problem solving, human agency, social awareness, communi-
cation, and self-awareness. More specifically, the RITA-T has
the following 9 tasks (context): (a) Blocked exploration of a
toy; (b) Object tease; (c) Blocked vision; (d) Magic ball; (e)
Color constancy; (f) Object vs. face; (g) Rapid joint attention
(JA); (h) Sad face, still face; and (i) Recognition. Each play-
based press looks at the child’s integration of one or two
of the previously mentioned constructs and three items look
at developmental cognition. As can be seen in Table I, the
tasks elicit responses from the face, gaze, and body/gesture
that we evaluate in the baseline method (Section IV). Each

press is coded and scored on a Yes or No scale (Yes = 0, No
= 1) and some items have a latency scale (scores range from
0-2). In all circumstances, lower scores are better, and a total
score is yielded by the sum of the 9 individual scores. Scores
below 12 are not associated with autism; scores of 12-15
warrant further evaluation; and scores of 16+ are concerning
for autism. The RITA- T has high sensitivity (.97), specificity
(.71), positive predictive value (.95), and negative predictive
value (.79) and does not correlate statistically with age or
sex. Scores on the RITA-T correlate positively with the
ADOS (r = 0.79), as well as to DSM-5 checklist items when
completed by clinicians blinded to RITA-T test results (r =
0.76). The RITA-T also has discriminatory properties that
result in different mean scores for children with autism as
compared to children with DD and no autism. The RITA-T is
fast, inexpensive,l and has excellent psychometric properties
for children 18-84 months [8], [24], [27], making it a strong



TABLE II: Task description and scoring for RITA-T tasks A-D. The examiner adds up the total score from each task with
lower scores preferred (less risk of autism). As can be seen here, the tasks elicit responses from gaze, gesture, and expression.
We take each of these feature types into account during our baseline analysis (Sections III-IV). Selected tasks are shown as
samples on how scoring is performed. For example, in task A, if the child looked at the examiner’s eyes, but took > 10s to
do it, and abandoned the task, they would have a score of 3 (out of 4 max) for that task. The other tasks, including tasks
E-I (not shown here), are scored similarly. Note: table recreated from official RITA-T [9] scoring sheet.

Task and Description Score
A. Blocking of Phone: Done three times - take best score
1. Looks at examiner’s eyes Y(0) N(1)
2. Latency to look at examiner’s eyes 0-5s(0); 6-10s(1); >10s(2)
3. Abandons task Y(1) N(0)
B. Phone tease: Done three times
1. Looks at examiner’s eyes Y(0) N(1)
2. Looks at parent’s eyes Y(0) N(1)
3. Looks at both Y(0) N(1)
C. Blocked Vision: Done one time
1. Looks at examiner’s eyes Y(0) N(1)
2. Latency to look at examiner’s eyes 0-5s(0); 6-10s(1); >10s(2)
D. Magic ball: Done three times
1. Reaction surprise expression Y(0) N(1)
2. Seeking object Y(0) N(1)
3. Joint attention to parent or examiner Y(0) N(1)

choice for early childhood autism research. See Table II for
details, from the RITA-T scoring sheet, for tasks A-D.

Fidelity Measures. A fidelity checklist was used to ensure
uniform data collection across participants. It included the
following items: 1) developmental assessment scores; 2)
RITA-T score; 3) medical record review to ascertain a)
diagnosis of autism or not; b) scores on autism assessments
(ADOS-2, CARS2); c) any history of DD. All participants
presenting to USF BAES had items 1, 3a, 3c. Participants
from Part C early intervention clinic for autism evaluations
had items 1, 2, 3a, 3b, 3c. Participants from the primary care
clinic had item 2 and we could not ascertain a priori if they
had items 1, 3a, 3b, 3c.

Raters and Rater Training. A licensed psychologist
conducted the play-based assessment. The psychologist has
extensive training/experience in administering autism screen-
ings and diagnostic tools and is certified in the RITA-T. The
psychologist was formally trained in the measure and had
to demonstrate competency in their ratings to be certified.
More specifically, they had to submit their ratings for child
cases, and they were compared against expert ratings. They
had to achieve inter-rater reliability to pass, which they did.

III. CONTEXT-BASED ANALYSIS OF VIDEOS OF
AUTISTIC CHILDREN (BASELINE)

A. Context and Pre-processing
In this paper, we propose a context-based baseline ap-

proach to classifying videos of autistic children. Here, con-
text refers to reciprocal child behavior during administration
of the 9 tasks on the RITA-T screener. For all 14 children in
our study, each video contains the child taking part in all 9
of the tasks (as detailed in Section II-C). During the RITA-T,
the child is given a score for each task [9]. The final score
is based on the cumulative score for all tasks and provides a

level of risk for autism. It is important to note, however, not
all children will have a high score for all tasks (e.g., the child
may have higher risk for autism overall, but for a particular
task they scored similar to a typically developing child - low
risk). Considering this, instead of performing classification
on the entire video, we split the videos into 9 separate
tasks (contexts). Classification is done separately for each
individual context. More specifically, we set the training,
validation and testing sets for individual contexts. According
to the RITA-T scoring algorithm, higher scores are associated
with higher risk for autism. By using the approach of a
context-based train-test set, our proposed network is able
to effectively learn better for specific contexts. We are
motivated to do this by previous work from Rudovic et al.
[37]. They were analyzing engagement intensity of autistic
children from face images. Here, they found that having one
model focused on each culture performed better for this task.
Here, we extend this idea where each model is explicitly
trained and tested on one context (compared to one culture
in Rudovic et al.).

For the proposed context-based approach, the videos are
divided into 9 contexts according to RITA-T scores. The 9
contexts assess for symptoms of risk of autism by evaluating
a child’s ability to engage in a range of social-communication
and cognitive skills which are categorized as joint attention
(JA), social awareness (SA), human agency (HA), and cog-
nition (C). Each context has a score which can range from
0-1 to 0-4. A score of 0 indicates low risk for autism on a
particular task and higher scores are associated with higher
risk for autism. For example, Task-A scoring criteria range
from [0,4]. On the other hand, Task-G scoring criteria range
from [0,1]. As previously mentioned, each task is scored
independent of other tasks and the sum of all scores indicates
a risk level for autism. Given this, we looked at the context



of each task individually when determining the level of risk
for autism. To do this, our class label (risk for autism) is
determined by thresholding the individual scores for each
context. When the total range of possible scores, for an
individual context, was [0,2], then 0 is considered low risk
for autism and a score of 1 or 2 is considered higher risk
for autism. When the range was [0,3] or [0,4], then 0 or 1 is
considered low risk for autism and the rest (e.g., 2, 3, or 4)
are considered higher risk for autism. This scoring threshold
is based on the RITA-T test where lower score mean low risk
and higher score mean high risk. This score threshold was
validated through the licensed psychologist that was formally
trained in this measure. Considering this, once we split the
videos into the 9 separate contexts, the same child could
have class labels of both low- and high-risk for autism across
the different contexts. This allows us to individually model
context and to validate our approach.

To feed the video data into the network, along with split-
ting the video data by context, we have also done further pre-
processing. For our study, we have evaluated three different
modalities within our experiments. The pre-processing to
extract each modality is detailed here. 1) Body: in this
portion of data we focused on subjects’ body movements and
gestures in response to the context. To do this, we manually
annotated all frames with the bounding box that contains
the subject. See Fig. 1 for examples of this; 2) Face: we
used MTCNN [47] to crop out the face data of subjects;
3) Gaze: we used OpenFace [2] to extract gaze features
from the videos, which provides information on subject’s
eye movements in response to task contexts.

B. Architectures

To model face and body modalities, we use a vision
transformer, as they have shown encouraging results in
gesture recognition [13] and expression analysis [48]. Ges-
tures and expressions are two features of interest for us in
analyzing these modalities. For gaze data, we use a time-
series transformer as it’s a 2D matrix consisting of time-
sequence and gaze features. Transformers have also shown
encouraging results for gaze recognition [42]. Along with
these approaches, we also fuse all modalities (Fig. 2).

1) Vision Transformer: To analyze face and body data we
passed our context-based videos to our network as a sequence
of images. We ran the same model for two modalities
separately. The vision transformer model consists of multiple
transformer blocks. To start, we passed the sequenced images
to the model by splitting images into patches of size 8, which
are then fed into the patch encoder layer. This layer projects
the data into a vector of size 64, and adds a learnable posi-
tional embedding to this vector. The output from this layer
is then fed into the transformer block. This block consists
of one normalization layer, one multi-head attention layer,
another normalization layer, and a final multi-perceptron
layer (MLP). There is a total of 8 of these transformer blocks.
Inside the transformer block multi-head attention is used as
a self-attention mechanism, which has been applied to the
sequence of patches. The output is divided by the number of
heads, which is four in our experiments. In doing this, the

Fig. 2: Overview of multimodal architecture. Face, body,
and gaze data are modeled separately, where 128 features
are extracted from each modality. These features are then
concatenated and used as input to an LSTM network.

model has multiple independent ways to understand the in-
put. These heads get concatenated and transformed, so we get
MultiHead(Q,K, V ) = Concat(heada, . . . , headh)W

O.
Here heada = attention(QWQ

a , kW k
a , V WV

a ) and Q, K
,V are Queries, Keys and Values, respectively. In our exper-
iments, Q = Number of Patches from an image + 1 class
token, which is 1025 (1024 + 1); K = number of channels
of image (3); and V = shape of a patch which is 64 (8× 8).
The transformer blocks produce a tensor of size [batch size,
number of patches, projection dim], which is then processed
by a classifier head with softmax to produce the final class
probabilities output. For our experiments, we use an image
size of 256 × 256. The learning rate is 0.001, batch size
is 8, number of epochs is 100, patch size is 7, number of
transformer heads is 4, and number of transformer layers is
8. For this model, total number of parameters is 45, 394, 953.

2) Time-series Transformer: To analyze gaze data, we
use a time-series transformer [49] to process a tensor of
shape (batch size, sequence length, features), where sequence
length is the number of time steps and features is each
input of the time-series. To extract gaze features, we apply
OpenFace to the body movement video data (manually
annotated frames as detailed in Section III-A). The (x, y, z)
coordinates are then extracted for left and right eyes. This
is done over the entire video. In our time-series transformer
we used four transformer encoder blocks, an average pooling
layer, and a MLP classification head. Finally, we used a dense
layer with softmax to classify the video from gaze data. For
this model, the total number of parameters is 19, 593, 240.

3) Multi-modal Fusion model: Along with single modal-
ities (face, body, and gaze), we also aim to investigate how
the fusion of these modalities can be used for our context-
based approach. To do this, the face and body features are
extracted from the vision transformer. From the transformer
block, 1024 features are extracted and then fed to a dense



layer to extract a total of 128 features. This is done separately
for both face and body data resulting in a total of 128 features
for each. From the time-series transformer, we extract 128
features in total for the gaze data. After extracting all features
from face, body, and gaze, we concatenated all features into a
new vector of length 384 (128×3). This approach to feature
fusion is based on the total number of gaze features being
128. Considering this, we also use 128 features for body and
face features to ensure a consistent number of features across
each modality. Once we have 128 features for each modality,
they are concatenated into the larger feature vector. This
multimodal approach to feature fusion has had success in
other affect related works [17], [18]. This new vector is then
used as input to a long short-term memory (LSTM) network.
We are motivated to use an LSTM based on previous works
that have shown success in using them with a multimodal
approach to analyzing human data [38], [6], [32]. These
works have shown success with similar modalities (e.g.,
face and body data), when temporal information is available.
Along with these works Li et al. [29] also use an LSTM
in their pipeline for searching videos, showing encouraging
results for video-based understanding. The learning rate is
set to 0.0003 and the Adam optimizer [23] is used. For this
model, the total number of parameters is 14, 690. See Fig. 2
for an overview of the proposed baseline approach.

IV. BASELINE EXPERIMENTS AND RESULTS

A. Experimental Design

Given the preprocessed video frames (as detailed in Sec-
tion III-A), we created an 80/20, subject-independent, split
of the data for training and testing, respectively. For the
train/test split we chose the participants according to their
RITA-T score. For example, participants with RITA-T score
12-16 are at medium risk of autism, > 16 are at high risk
and < 12 are at low risk. Considering this, we created the
training/testing set using the combination of all risk levels.
As we are evaluating low vs. high risk, we chose participants
with < 12 as low risk and > 12 as high risk. An 80/20 split
was chosen instead of leave-one-subject-out cross-validation
due to combining all risk levels. More specifically, we ensure
there was a low, medium, and high risk for autism, based
on the RITA-T scores. This was to ensure testing on each
scenario. For face and body data, they were used as input
to the vision transformer as a sequence of images where
prediction happened on each image. More specifically, for
each subject we had a sequence of images as input and also
the same number of outputs as prediction in terms of high-
and low-risk for autism. For the final classification, we used
majority voting across all input images. For example, given
179 images as input and 150 were predicted as high risk
and 29 as low risk for autism, the final output would have a
classification of high risk for autism. For some of the subjects
we were unable to extract (crop) the facial data. Due to this,
we had to discard some images for total occlusion of the face.
This resulted in some subjects/tasks not being used due to a
small number of images being pre-processed. For example,
in some cases only 10− 20 images were cropped.

For the Gaze data we used the time-series transformer. In
that network, we used the gaze data extracted from OpenFace
as input. We used the (x, y, z) coordinates of the left and
right eyes. Considering this, the input to the transformer is a
time-sequence vector of size 6. Unlike the vision transformer
(majority voting), there is one output prediction from the
entire video (time-series).

For our multimodal fusion, we extract all of the features
from the three networks. As there is a large difference in
values between face and body, and gaze, we normalized the
range for all modalities to [0, 1]. Given these normalized
features, we then sum up the features as mi = bi+fi+gi for
i = 1 to N . Here, N = 128, bi, fi, and gi are the ith body,
face, and gaze features, respectively. This results in the new
features vector vf = [m1,m2,m3, . . . ,mN ], which is used
as input to an LSTM network for classification.

As mentioned for training, in Section III-A, the class labels
for each context were determined based on a threshold for
the individual scores. For testing, this same thresholding
technique was used, however, if a particular context had a
class label that was different from the ground truth diag-
nosis, that particular context was removed from the testing.
For example, if a child had high risk for autism and the
thresholding technique resulted in a class label of low-risk
for autism, that context was removed for testing. While we
are looking at context, we also want to be able to further
verify which context correctly classifies the videos (i.e., a
ground truth of high risk for autism results in a classification
of high risk for autism). Considering this, for body and gaze
data, we have 14 contexts for high risk for autism and 6 for
low risk for autism, resulting in 20 total contexts for testing.
These testing contexts specifically came from participants 5
and 10 for high risk for autism, and participant 9 for low risk
for autism, in the proposed dataset. For face data there are
a total of 19 videos as no cropped facial data was returned
for one task.

B. Results
The results (accuracy and F1) for each context and modal-

ity (unimodal and multimodal) can be seen here in Table
III. For each modality (body, gaze, or face), there is one
context that results in the highest accuracy and F1 score.
More specifically, for body, the context object vs. face (Task
F) resulted in an accuracy of 100% and an F1 of 0.93. For
face, the context rapid joint attention (Task G) resulted in
an accuracy of 100% and an F1 of 0.72. Finally, for gaze,
the context toy blocking (Task A) resulted in an accuracy
of 100% and an F1 of 1.0. Across all contexts the accuracy
ranges from [33%, 100%], and the F1 ranges from [0.02, 1.0].
Due to the large range, for both accuracy and F1, these
results support that context matters when classifying videos
of autistic children. These results also support that within
individual contexts, different modalities will have different
performance. As also can be seen in Table III, in the last row,
the averages across all contexts for each modality are similar.
For example, the average accuracies for body, face, and gaze
are 0.61, 0.59, and 0.57, respectively. Where it is different is
in the actual contexts. As previously noted Task G resulted
in an accuracy of 100% for the face modality, however, when



TABLE III: Average accuracy and F1-score, across testing
data, for each context and corresponding modality. Each row
represents one of the following 9 contexts: (A) Blocked
exploration of a toy; (B) Object tease; (C) Blocked vision;
(D) Magic ball; (E) Color constancy; (F) Object vs. face;
(G) Rapid join attention (JA); (H) Sad face, still face; (I)
Recognition. Bold text corresponds to best context for each
individual modality. B/F/G corresponds to a multimodal ap-
proach (body, face, and gaze). Metrics are listed as Accuracy
| F1 in each table cell, from 0 to 1. Last row is the average
accuracy and F1 across all contexts. Higher is better.

Body Face Gaze B/F/G
A 0.66 | 0.62 0.5 | 0.2 1.0 | 1.0 0.66 | 0.67
B 0.66 | 0.42 0.5 | 0.53 0.66 | 0.53 0.66 | 0.67
C 0.66 | 0.48 0.66 | 0.59 0.33 | 0.33 0.33 | 0.33
D 0.33 | 0.2 0.8 | 0.9 0.66 | 0.53 0.33 | 0.33
E 0.66 | 0.65 0.66 | 0.5 0.66 | 0.67 0.66 | 0.67
F 1.0 | 0.93 0.33 | 0.46 0.33 | 0.2 0.66 | 0.67
G 0.33 | 0.43 1.0 | 0.72 0.66 | 0.67 0.66 | 0.67
H 0.66 | 0.46 0.33 | 0.02 0.33 | 0.2 0.66 | 0.67
I 0.5 | 0.54 0.5 | 0.03 0.5 | 0.33 0.5 | 0.33

Avg 0.61 | 0.53 0.59 | 0.44 0.57 | 0.55 0.57 | 0.56

body and gaze were used for this context it resulted in an
accuracy of 33% and 66%, respectively. Similarly, Task F
resulted in 100% accuracy for body, however, both face and
gaze had an accuracy of 33%. Task A resulted in 100%
accuracy for gaze, however, body and face had accuracies
of 0.66% and 0.5%, respectively.

To give a broader picture regarding classification across all
contexts, and testing subjects, for our proposed context-based
approach, we detail the confusion matrices for face, body,
and gaze in Tables IV, V, and VI, respectively. Here, the
numbers in the confusion matrix correspond to all contexts
across each of each of the subjects. For face and body, the
models more often classified the context as high risk for
autism. For example, in Table IV, it can be seen that high
risk was the classification for 10 out of 19 instances, for
face. This can be explained, in part, as high risk is the
majority class and it has been shown that classifiers trained
on imbalanced data often predict the majority class [15].
Showing the confusion matrices in this way (all contexts
across all subjects in the testing sets) supports the need
to evaluate and discuss individual contexts. With only the
information given in Table IV, an overall accuracy of 55%
can be calculated (10 out of 18 instances were correctly
classified). On the other hand, if we look at individual
contexts, a better picture of the classification appears. More
specifically, as detailed previously, the context rapid joint
attention (Task G) had an accuracy of 100%. A similar result
is found with body data, where 11 out of 20 instances were
classified as high-risk for autism. Conversely, the opposite
is true with gaze as the modality. Here, low-risk for autism
was more often the classification (Table VI). Here, 11 out
of 20 instances were classified as low-risk for autism. Only
one instance of low-risk for autism was incorrectly classified,
the rest were correct. Intuitively, we would expect the models

TABLE IV: Face confusion matrix for low vs. high risk for
autism. Numbers correspond to total of all contexts, for face,
across all subjects in testing set.

High-risk Low-risk
High-risk 7 6
Low-risk 3 3

TABLE V: Body confusion matrix for low vs. high risk for
autism. Numbers correspond to total of all contexts, for body,
across all subjects in testing set.

High-risk Low-risk
High-risk 7 7
Low-risk 4 2

to be biased towards the majority class [11]. One potential
reason for this could be our use of a time-series transformer
compared to the vision transformer for face and body data.
While this is an interesting finding, it is currently out of
scope of the current paper and left for future work.

We also evaluated our proposed multimodal approach
(Section III-B.3). These results can also be seen in Table
III (last column, labelled B/F/G). While the multimodal
approach still had differences across each context, the re-
sults here are less significant. For example, the range of
the accuracies and F1 are smaller with [0.33, 0.66] and
[0.33, 0.67], respectively. As can be seen in Table VII,
the confusion matrix for the multimodal approach looks
similar to the others (face, body, and gaze). The main
difference being no one context was able to be used to
achieve 100% accuracy. This type of result (i.e., unimodal
approach outperforms multimodal approach) has been seen
in other related applications. While it has been shown that a
multimodal approach can outperform a unimodal approach
[46], the opposite has also been found to be true. More
specifically, a lower accuracy and F1-score are reported for
the multimodal approach [40], as shown here.

These results make sense from an intuitive standpoint. For
example, in the toy blocking context (Task A), gaze had the
highest accuracy and F1. This would be an instance where
the child should look at the examiner after they block the toy.
More discussions on this, the other contexts and modalities,
and the proposed approach (unimodal and multimodal) can
be found in Section V.

TABLE VI: Gaze confusion matrix for low vs. high risk for
autism. Numbers correspond to total of all contexts, for gaze,
across all subjects in testing set.

High-risk Low-risk
High-risk 8 6
Low-risk 1 5



TABLE VII: Multimodal confusion matrix for low vs. high
risk for autism. Numbers correspond to total of all contexts,
for multimodal approach, across all subjects in testing set.

High-risk Low-risk
High-risk 7 7
Low-risk 1 5

V. DISCUSSION

The proposed dataset addresses some challenges and limi-
tations such as (1) data not being publicly available [37], [12]
due to the sensitive nature of the data; (2) the tasks used
for data collection are often not directly related to autism
[22], [50]; and (3) the control class was picked from another
dataset [26] with different tasks.

Along with the dataset we also present a baseline study
evaluating face, gaze, and body data along with the context
to classify videos for low- and high-risk for autism. The
results are encouraging and show some results we would
expect to see. As detailed in Section IV-B, the toy blocking
context (Task A) resulted in 100% accuracy from gaze. As
noted in Table I, the behaviors observed are eye contact and
latency with examiner; eye contact only with hand holding
toy or give up on task. Considering this, the results could
be explained by the child looking (or not looking) at the
examiner when the toy was blocked. Although there are other
tasks where eye contact is an important behavior, these tasks
do not do as well as Task A. For example, Task C also has
eye contact as an observed behavior, however, the accuracy
of this task for gaze was 33%. These results suggest that
the context in which the modality is seen has an impact
on the ability to classify the videos. Similar results were
observed for both face and body. For example, face data
worked best (highest accuracy) with the rapid joint attention
context (Task G). Here, the examiner looks at the child and
points somewhere for the child to look. This action could
have large variations in facial affect (e.g., child is surprised
at what they are looking at versus child shows a neutral
face). Body movement data worked best for the object vs.
face context (Task F). Here, the child is shown two images
(one with object and one with face). Often, instead of simply
looking at the image they are most interested in, the child
orients their entire body towards that image. The children
who scored high-risk for autism, would often orient towards
the image of the object and not the face. These results are
promising and motivate us to conduct further research.

Overall, due to the public availability of the proposed
dataset and the presented baseline approach, this work has
the potential to help advance the field for both machine
learning research into autism diagnosis and medical prac-
titioners. These advancements include, but are not limited
to, (1) giving practitioners a tool to help expand autism
diagnosis to a larger cohort of subjects; (2) lowering the
average age range of diagnosis for autism; and (3) giving
researchers a publicly available, RITA-T and context-based
dataset of videos of autistic children. The initial results on
the dataset, from the baseline, are encouraging. They suggest
a context-based approach can improve classification of risk

level for autism among young children. Along with this, they
also suggest that the use of RITA-T for context can elicit
appropriate responses in face, gaze, and body movement that
can be used to train machine learning classifiers.

A. Limitations and Future Work

Although these results are encouraging, there are some
limitations to our work. First, the current size of the dataset
is relatively small with 14 subjects. To address this, we will
continue to collect a larger cohort of children which will
result in a larger available dataset over time. Second, there
is a large class imbalance (11 subjects with high risk, 3 with
low). We will address this limitation by over-sampling in
a well child pediatric clinic with the aim to bring balance
among participant enrollment for children with high and
low risk for autism. Third, only three of the subjects were
evaluated in the test set. In our experimental design, we have
an 80/20 split between training and testing data. For future
work, we will perform leave-one-subject-out cross-validation
on the current dataset and the larger dataset that will be
collected. Finally, the multimodal approach overall, did not
perform as well as the unimodal approach. We will further
evaluate the proposed approach with the larger dataset,
leave-one-subject-out cross-validation, and we will evaluate
different fusion approaches such as score-level fusion [20].

B. Ethics Statement

This work and all its future applications are intended to
be used with consent from all parties that can include, but
is not limited to, the child’s caregiver, the examiner, and
any medical practitioner that is involved in diagnosis of the
child. A major ethical concern involved in working with
human subjects is privacy. In this work, we collect video
data from 14 children which also includes the examiner and
the caregivers in the full videos. For the collected dataset,
all participants consented to have their data recorded and
used for future research purposes. This was approved by
IRB ensuring no ethical oversight. There are also issues
with class imbalance and the use of machine learning. This
imbalance may introduce bias towards the majority class [7].
For this reason, we evaluate our models against F1-score
and accuracy to give more insight into model performance.
Jeni et al. [21] have shown that reporting multiple evaluation
metrics can help when class imbalance is shown.

VI. CONCLUSION

In this paper, we proposed a new context-based dataset
for analyzing videos of autistic children. The new baseline
results, on the proposed dataset, show encouraging results on
the usefulness of the dataset and that context matters when
analyzing videos of autistic children. The collected dataset,
used in this study, will be released to the larger scientific
community for replication of this work, as well as furthering
advancements in video-based analysis of autistic children.
The dataset and all code will be available to request and
download through the University of South Florida.
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