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ABSTRACT 

In this paper, we propose a novel method for 3D facial 

expression recognition based on a statistical shape model 

with global and local constraints. We show that the 

combination of the global shape of the face, along with local 

shape index-based information can be used to recognize a 

range of expressions. These expressions include happiness, 

sadness, surprise, embarrassment, fear, nervousness, anger, 

disgust, and pain. We give insights into which features are 

important for facial expression recognition through 

statistical analysis. We also show that our proposed method 

outperforms the current state-of-the-art methods on 

spontaneous and non-spontaneous facial data. 

 

Index Terms— Expression, classification, statistical, 

model, spontaneous, non-spontaneous 

 

1. INTRODUCTION 

It has been argued that recognizing emotions is one of 

the most important aspects of human intelligence [22]. Facial 

expressions are one way in which emotions are elicited, and 

the research into automatically recognizing these emotions 

has been successful in the past decade. This is due in part to 

the release of larger and more challenging facial databases 

[14], [15], [19], [21], [25], [28], [29], [34], [36], [37], [38], 

[39], [40]. Combined, these databases contain multiple 

terabytes of multimodal data, allowing for rapid growth of 

new methods to accurately recognize a wide range of 

challenging facial expressions. These datasets are integral to 

the success of expression recognition research, as it has been 

shown that 2D data struggles to provide a realistic resource 

for consistent and reliable expression recognition [26], [29]. 

The challenges encountered with 2D data collection, such as 

pose variation, lighting, and color, can be overcome with the 

use of 3D datasets; which makes them a natural fit for our 

study. 

 Expression recognition is largely an unsolved problem, 

with applications in video games, education, entertainment, 

intelligent transportation systems, pain recognition systems 

in the health industry, and behavior analysis. With a focus on 

these types of applications, the BU-4DFE [36] face database 

has been successfully used in recent years for facial 

expression analysis. Sun et al. [30] developed an approach 

establishing correspondence between 3D models over time. 

Using these correspondences, they applied Spatio-Temporal 

Hidden Markov Models that represent facial information by 

looking at both intra-frame and inter-frame changes for facial 

expression recognition; they achieved a classification 

accuracy of 83.7%. Similar work was done by Yin et al. [36] 

with a person-independent experiment, on 60 subjects, where 

a two-dimensional Hidden Markov Model was used to learn 

the temporal relations of the facial regions, to classify 

expressions, achieving an accuracy of 90.44%.  

Drira et al. [13] proposed a new Deformation Vector 

field, based on Riemannian facial shape analysis, which 

describes local deformation of the face over time. Using their 

proposed approach, along with a random forest [5], they 

achieved 93% accuracy while classifying expressions. Fang 

et al. [17] used a Support Vector Machine with a Radial Basis 

Function kernel to classify 3D facial expressions. They 

achieved 84.1% when using the geometrical coordinates as 

the feature vector and 91% when using the normal of the 

coordinates. Danelakis et al. [11] proposed the GeoTopo+ 

descriptor which exploits the landmarks of the face, to create 

three sub-descriptors that capture the topological and 

geometric information of the face. Using these descriptors, 

they performed unsupervised facial expression recognition 

on the BU-4DFE and BP4D [38], [39] databases, achieving 

accuracies of 90% and 88.56% respectively. 

Motivated by these works, we propose a method for 

facial expression recognition on spontaneous and non-

spontaneous 3D facial data. A summary of the main 

contributions of the paper are detailed below. 

 

(1) We propose a novel method for facial expression 

recognition using a statistical shape model with 

global and local constraints. 

(2) We compare and analyze the proposed method on 

spontaneous and non-spontaneous 3D facial data. 

(3) We show that the proposed method outperforms the 

current state of the art on two public databases. 

 

2. STATISTICAL SHAPE MODEL WITH GLOBAL 

AND LOCAL CONSTRAINTS 

Certain regions of the face inherently have important 

information for recognizing emotions, such as the mouth and 

eyes. To model these key features, facial landmarks and local 

curvatures of the surrounding neighbors of each landmark are 

used. A statistical model of shape from facial landmarks is 



created; which includes the eyes, nose, mouth, eyebrows, and 

contour of the face. To construct this statistical model, 

training data is first annotated with L landmarks, which 

allows for modeling of both global and local constraints of 

the face. An overview of model construction and landmark 

detection are given in the following sub-sections. For a 

detailed analysis of the method, the reader may reference the 

work on shape index-based statistical shape models [7], [8].  

 

2.1. Global constraints 

The global constraints of the face shape are constructed 

from landmark features that represent key features (e.g. eyes, 

mouth, and nose).  Training data is manually annotated with 

L landmarks around these features. A 𝑛 × 𝑛 patch is 

constructed, using the corresponding (u, v) coordinates 

around each landmark on the training data. Given a training 

set of size M SI-SSM models, each with 𝐿  patches of size 

𝑛 × 𝑛, a parameterized model 𝑆𝐺 = (𝑥1, 𝑦1, 𝑧1, … , 𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁) 

that defines the global face shape is constructed. Principal 

component analysis (PCA) is then applied to the training data 

to learn the modes of variation, allowing us to approximate 

new global face shapes.  

 

2.2. Local constraints 

The local constraints of the face shape are constructed 

from shape index values [12] that represent a local 𝑛 × 𝑛 

patch around each key facial landmark from the global 

constraints. Given a training set of M models, each with L 

patches, a local parametrized model 𝑆𝐿 = (𝑆𝐼1, … , 𝑆𝐼𝑁) that 

defines the local face shape is constructed. PCA is applied to 

this model in the same manner as the global constraints, 

allowing us to approximate new local face shapes. 

  

2.3. Combined feature model 

Given the parameterized models 𝑆𝐺  and 𝑆𝐿, a feature 

model that combines both global and local constraints, is 

constructed. The combination of these models allows us to 

move the local patches on the face while still maintaining the 

global constraint of the overall face shape through the feature 

vector 𝑆𝐺𝐿 = (𝑥1, 𝑦1, 𝑧1, … , 𝑥𝑁 , 𝑦, 𝑧𝑁 , 𝑆𝐼1, … , 𝑆𝐼𝑁). By using 

shape index values to constrain and move the combined 

model, it does not suffer from problems of global lighting 

variation [30], as they are invariant to this.  The combined 

feature model is used for facial landmark detection; which is 

detailed in the next sub-section. 

 

2.4. Landmark detection 

To detect landmarks on 3D geometric face meshes, the 

correlation between the combined global and local feature 

vectors, as well as the input mesh, is computed. To do this, a 

sufficient starting point for the model is found on the mesh, 

and the weight parameters of the global shape are learned by 

uniformly varying the weight vector; this generates new 

instances of the model. Iterative closest point [4] is then used 

to minimize the distance between the combined model and 

the mesh. The instance of the model that results in the lowest 

matching score is used as the initialization. Once initialized, 

a local patch-based correlation score is computed between the 

model and the input mesh through a cross-correlation 

template matching scheme [20]. This score is computed for 

all shape index-based patches, which are summed for a final 

correlation score (CS). This is used as a baseline to perform a 

patch-based correlation search to move the local patches into 

a position that better represents the true face shape. 

After initialization, a local patch-based search is 

performed by creating a new patch, consisting of shape index 

values of the same size around each of the cells of the original 

𝑛 × 𝑛 patches. A new correlation score is computed for each 

of the new patches. The landmark feature is then moved to 

the patch that results in the best correlation score. The new 

correlation scores for each patch are then summed to give a 

new CS. This continues until the model converges with the 

mesh. See figure 1 for sample detected landmarks on the BU-

4DFE [36] and BP4D [38], [39] databases. 

 

3. EXPERIMENTS AND EVALUATION 

Using the 3D facial landmarks detected from the method 

detailed in section 2, we perform facial expression 

recognition on two facial expression databases.  We then 

analyze spontaneous and non-spontaneous data and compare 

our results to the current state of the art. An overview of the 

data used, experimental design, results, and analysis are 

detailed in the following sub-sections. 

 

3.1. Facial expression databases 

To conduct our experiments, we used two state-of-the-

art 3D facial databases. The first database is the BU-4DFE 

[36]; that consists of 101 subjects displaying 6 prototypic 

facial expressions (anger, happiness, fear, disgust, sadness, 

and surprise). There are 58 females and 43 male subjects, 

with a variety of ethnic and racial ancestries with an age range 

of 18-45. The data was collected in a controlled environment 

in which the subjects were instructed to perform specific 

emotions; therefore, we designate the BU-4DFE as a non-

spontaneous database for the rest of the paper. The 

expressions were captured at 25 frames per second, where 

each expression sequence is approximately 100 frames, 

giving a total of over 60,000 frames of data. Each 3D model 

has a resolution of approximately 35,000 vertices (figure 1).  

The second database is the BP4D [38], [39]. This was 

used in the Facial Expression Recognition and Analysis 

Challenge 2015 [31] and 2017 [32].  It was developed to 

promote the exploration of spatiotemporal features in subtle 

facial expressions. There are 23 females and 18 male subjects 

displaying 8 expressions each (happy, sad, surprise, fear, 

nervous, pain, anger, disgust). The data was collected in an 

environment where subjects naturally interacted with an 

interviewer; we attribute the BP4D as a spontaneous 



database. The subjects are between 18-29 years of age; 11 

Asian, 4 Hispanic, 6 African-American, and 20 Euro-

American ethnicities are represented. 

 

3.2. Experimental design 

Based on the model detailed in section 2, we detected 83 

facial landmarks on the spontaneous and non-spontaneous 

datasets. From these landmarks, we constructed a 249-

dimension vector to represent each face and expression (83 

3D landmarks (x, y, z)). By using these 83 landmarks, we can 

reduce the original model vector of approximately 105,000 

dimensions (obtained from 35,000 3D vertices of the original 

model) to a 249-dimension vector and still maintain a high 

degree of accuracy for expression recognition. We detected 

these 83 facial landmarks on 60,402 models in the non-

spontaneous dataset and 367,474 models in the spontaneous 

dataset. We then used these facial landmarks to train a 

separate random forest (RF) [5], which is a collection of 

regression trees [6], where the mean output of all trees is 

taken as the final output, for each dataset. We used a 10-fold 

cross-validation scheme where the data is randomly split into 

10 subsets, where nine are used for training and the other is 

used for testing. This is done a total of 10 times, where each 

subset is used to test. The average error of all iterations is 

taken to help reduce overfitting. We show that using this 

experimental design results in accurate recognition of 

spontaneous and non-spontaneous facial expressions.  

 

3.3. Experimental Results and Analysis 

By training our models with the landmark feature 

vectors, we achieved a max classification rate of 99.9934% 

(60,398 out of 60,402) in the non-spontaneous dataset [36] 

and 99.6974% (366,362 out of 367,474)  in the spontaneous 

dataset [38], [39]. See tables 1 and 2 for the confusion 

matrices on non-spontaneous and spontaneous environments. 
 

Table 1. Confusion matrix, for facial expression recognition on non-

spontaneous data, showing number of classified instances. 

Expression key: E1-Happiness; E2-Sadness; E3-Surprise; E4-Fear; 

E5-Anger; E6-Disgust. 

 E1 E2 E3 E4 E5 E6 

E1 9973 0 0 0 0 0 

E2 0 10142 0 0 0 0 

E3 0 1 9947 0 0 0 

E4 0 0 1 10043 0 0 

E5 0 0 0 0 10122 2 

  E6 0 0 0 0 0 10171 

 

The proposed method was able to recognize most of the 

non-spontaneous expressions with 100% accuracy (4 

misclassified models from 3 different expressions). From the 

incorrect classifications, surprise was misclassified as 

sadness once, fear was misclassified as surprise once, and 

anger was misclassified as disgust twice. The proposed 

method is also able to recognize spontaneous expressions 

with a high degree of accuracy, misclassifying a total of 1,112 

facial models out of 367,474. From the incorrectly classified 

spontaneous facial data, embarrassment was incorrectly 

classified as the seven other expressions the most, at 38% of 

the time (425 out of 1112). This can be attributed to 

embarrassment being a complex, self-conscious emotion, 

where multiple behaviors occur over the emotion [33].  
 

Table 2. Confusion matrix, for facial expression recognition on 

spontaneous data, showing number of classified instances. 

Expression key: E1-Happiness; E2-Sadness; E3-Surprise; E4-

Embarrassment; E5-Fear; E6-Pain; E7-Anger; E8-Disgust. 

 E1 E2 E3 E4 E5 E6 E7 E8 

E1 47544 0 0 63 9 4 16 3 

E2 4 65506 1 4 0 0 13 1 

E3 24 14 12482 91 23 16 56 6 

E4 73 5 9 60245 43 8 77 7 

E5 22 2 5 91 52013 12 46 6 

E6 3 0 0 39 13 44518 53 4 

E7 22 2 4 58 24 3 68890 5 

E8 12 2 8 79 11 6 12 15164 

  

To test the utility of our landmark features, we also ran 

the same classification scheme with a support vector machine 

(SVM). Due to the size of the spontaneous data and the time 

complexity of SVMs, we ran it on the non-spontaneous data, 

achieving a classification accuracy of 99.62%. 

The accuracy of these experimental results can be 

attributed to the proposed method’s ability to model the large 

variations that are present in the data. In the non-spontaneous 

data, the mouth region contains a large portion of the emotion 

variation. In the spontaneous data, there is variation in the 

mouth region. However, it is not the only significant region 

of variation; the regions around the eyes also detail large 

variations. To further study this, we evaluate the top-ranked 

features across spontaneous and non-spontaneous data and 

compare them to gain understanding about which features are 

statistically important for each data type. We rank all 249 

features based on the information gained from classifying 

facial expressions, which is defined as the reduction in 

entropy of the expression class after the feature is observed. 

The top 10% ranked features (25) of each model were then 

selected for further analysis. This can be seen in figure 1 and 

more details are given in table 3.  

 
Figure 1. Surprise expression from non-spontaneous data (top), and 

spontaneous data (bottom). Left side shows 83 landmarks, right side 

shows top 10% of ranked features. 



Table 3. Number of features in the corresponding facial regions of 

top ranked landmark features. 

 Non-spontaneous Spontaneous 

Mouth 19 6 

Contour of face 6 3 

Eyes N/A 8 

Eyebrows N/A 8 

 

As seen in table 3, spontaneous and non-spontaneous 

data display variation in different facial regions when 

emotions are expressed. This difference in variation is due, 

partially, to the nature of the datasets we are comparing 

(spontaneous vs. non-spontaneous). In the non-spontaneous 

data, the dominance of the mouth and contour of the face over 

the other landmarks can be attributed to the lack of natural 

movement on the experiment in which the data was collected. 

On the other hand, the dominant features for the spontaneous 

setting are not only the mouth and the contour of the face, but 

the eyebrows, and more importantly the eyes; this agrees with 

physiological literature that describes the eyes as a 

fundamental feature for expression recognition [27]. The 

natural reaction from a subject to a stimulus, such as a loud 

noise or a hand being held into a bucket of ice water, leads to 

an increase in corporal movement compared to the non-

spontaneous environment; this justifies an even distribution 

across the importance of the features in the spontaneous data. 

The proposed method can accurately model these complex 

variations in emotion across spontaneous and non-

spontaneous data, with a high degree of accuracy. 

To further analyze using a statistical shape model with 

global and local constraints on non-spontaneous and 

spontaneous data, we looked at the standard deviation of the 

variation in emotion for the top-ranked landmarks. The non-

spontaneous database presented a minimum standard 

deviation of 9.6445 and a maximum 10.7695. The persistent 

results for the standard deviation across the landmarks show 

that they are an effective method for facial expression 

recognition due to the consistent change across the 

landmarks. In other words, landmarks change in their position 

in different ways, but the amount they move is stable. In the 

spontaneous setting, a minimum standard deviation of 

13.7695 and maximum of 15.555 was presented. The results 

for the spontaneous dataset validate what was observed in a 

non-spontaneous setting, even though there is more change 

across the data (higher standard deviations) the variance 

across the standard deviations is still low. Again, the facial 

landmarks vary in a consistent manner. This consistent 

variation in the facial landmarks across spontaneous and non-

spontaneous data further details the power of the proposed 

method for expression recognition. 

We also compared our results to the current state of the 

art in 3D facial expression recognition. Table 4 shows 

comparisons on non-spontaneous data and table 5 shows 

comparisons on spontaneous data. It is important to note that 

the majority of works on this spontaneous data detail action 

unit recognition [1], [31], [38], [39], not expression 

recognition as proposed in this study. As can be seen in tables 

4 and 5, our proposed method outperforms the state of the art 

on spontaneous and non-spontaneous facial data.  

 
Table 4. Comparison of proposed method to state of the art on non-

spontaneous data for facial expression recognition. 

Method # of expressions Accuracy 

Proposed Method (RF) 6 99.99% 

Proposed Method (SVM) 6 99.62% 

Drira et al. [13] 6 93.21% 

Abbasnejad et al. [1] 6 91.22% 

Fang et al. [17] 6 91.00% 

Yin et al. [36] 6 90.44% 

Danelakis et al. [11] 6 90.00% 

Canavan et al. [9] 6 84.80% 

Sun et al. [30] 6 83.70% 

Beretti et al. [3] 6 79.40% 

Jeni et al. [18] 6 78.18% 

Reale et al. [23]  6 76.12% 

Yang et al. [35] 6 75.90% 

Fang et al. [16] 6 75.82% 

 

Table 5. Comparison of proposed method to state of the art on 

BP4D database for facial expression recognition. 

Method # of expressions Accuracy 

Proposed Method (RF) 8 99.69% 

Danelakis et al. [11] 8 88.56% 

 

As shown in tables 4 and 5, the proposed method 

outperforms current state of the art on both types of data with 

an increase of 11.13% accuracy on spontaneous data and an 

increase of at least 6.78% accuracy on non-spontaneous data. 

 

4. DISCUSSION 

Across our experiments, results, and analysis, we have 

presented a novel method for facial expression recognition; 

which outperforms the current state of the art in both 

spontaneous and non-spontaneous settings. We have shown 

that the different types of data (spontaneous and non-

spontaneous) display variation in different facial regions, 

showing an important difference in the features that are 

relevant for expression recognition. The non-spontaneous 

data showed most variation in expression near the mouth, 

while the spontaneous data showed variation across multiple 

facial regions, including the mouth and eyes. We have 

demonstrated that the proposed method is powerful for 

expression recognition due to the consistent nature of facial 

landmark variation. The proposed method outperforms the 

current state of the art on two public databases [36], [38], 

[39]. 

We are interested in further studying the complexity of 

expressions (e.g. embarrassment), as well as testing on larger 

and more challenging datasets [40]. To facilitate this, we will 

further develop our proposed method by incorporating multi-

modal data, such as physiological, thermal, and action units, 

to gain insight into which modalities contribute the most to 

facial expression recognition. We will also compare our 

hand-crafted features to a deep feature representation. 
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