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People with autism suffer from social challenges and 
communication difficulties, which may prevent them from 
leading a fruitful and enjoyable life. It is imperative to 
diagnose and start treatments for autism as early as possible 
and, in order to do so, accurate methods of identifying the 
disorder are vital. We propose a novel method for 
classifying autism through the use of eye gaze and 
demographic feature descriptors that include a subject’s age 
and gender. We construct feature descriptors that 
incorporate the subject’s age and gender, as well as features 
based on eye gaze data. Using eye gaze information from 
the National Database for Autism Research, we tested our 
constructed feature descriptors on three different classifiers; 
random regression forests, C4.5 decision tree, and PART. 
Our proposed method for classifying autism resulted in a top 
classification rate of 96.2%.  
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Autism Spectrum Disorder (ASD) is a neurodevelopmental 
disorder characterized by difficulties with social 
communication and interaction [13]. People diagnosed with 
autism also may suffer from repetitive thoughts and 
obsessive behaviors. These behaviors and communication 
issues may lead to difficulties learning and forming 
relationships, as well as bullying [5]. Early detection of 
ASD is critical as it can help children overcome these 
disorder-related obstacles. The salient association between 
eye movements and cognitive processes and abilities in 
general makes study of the relationship between eye gaze 
and ASD significant [8]. Previous studies show that 
impairments in visual attention and gaze patterns in children 
with ASD serve as important markers for diagnosis and can 
be the basis for disturbances in communication and 
interaction [1]. 

An accurate algorithm that incorporates various factors 
like age and gender as well as patterns in eye gaze behavior 
can make measurements that may not be possible with the 
human eye, thus providing a more reliable and quicker 
diagnosis. With 25 to 50% of children receiving early 
intervention beginning general education by kindergarten, it 

is imperative to screen at-risk individuals (often identified 
by familial history) and potentially diagnose ASD as early 
as possible in order to begin treatment and pursue a high 
quality of life. 

Previous studies have used eye tracking devices to 
measure and categorize eye gaze patterns in children with 
and without autism. Pierce et al. [12] found that, when given 
a choice between social images and geometric images, 
children with ASD prefer to look at geometric patterns, 
whereas typically developing (TD) children prefer to look at 
social images. Sasson et al. [16] discovered, when presented 
with arrays of social and nonsocial objects, the visual 
attention of children with autism was more circumscribed 
(fewer images were explored), more perseverative (more 
time was spent on each image) and more detail-oriented 
(greater amount of fixation on those images that were 
explored) than TD children. Bekele et al. [2] found, through 
the use of different regions in the brain and compared to TD 
children, children with ASD focus more on the forehead (an 
information irrelevant area) than on the mouth (information 
relevant). 

Although these studies provide a wealth of information 
regarding characteristic eye gaze patterns of children with 
autism when presented with various stimuli, they rarely 
focus on detection or diagnosis of ASD gaze patterns, 
instead emphasizing observed differences in individuals 
known to be diagnosed with autism. Alie et al. [1] 
performed one of the few studies attempting to classify 
autism from examining eye gaze of infants with ASD. They 
used Markov models to assign infant subjects to either a TD 
or ASD group based on sequences of eye gaze data obtained 
through video. The study achieved a 93.75% accuracy rate, 
indicating eye gaze alone is a significant determinant in 
detecting autism. 

In this paper we propose a novel method for autism 
classification through the use of eye gaze and subject 
demographic information. Feature descriptors, created using 
subject’s age, gender, and eye gaze data were tested on three 
different classifiers; random regression forest [4], C4.5 
decision tree [14], and PART [7]. Our proposed method 
resulted in an autism classification rate of 96.2% on the 
National Database for Autism Research (NDAR) [11]. See 
figure 1 for an overview of our proposed approach. A 
summary of the main contributions of this work follows: 
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(1) We propose novel features descriptors, for autism 
classification, based on gaze and demographic 
information such as age and gender. 

(2) We propose the use of 3 different machine learning-
based classification algorithms for helping to 
classify autism. These include random regressions 
forests [4], C4.5 decision trees [14], and PART [7]. 

(3) We test our new proposed features and classification 
scheme on data obtained from the National Database 
for Autism Research [11].  
 

 
Figure 1. Proposed autism classification overview. 

 
The proposed classification scheme makes use of eye gaze 
data, as well as demographic information in order to classify 
autism.  We propose the use four different feature 
descriptors for help with this classification problem. These 
include (1) raw eye gaze points (x, y); (2) average fixation 
duration; (3) age; and (4) gender. 

Eye gaze information can detail important features that 
can be used to classify autism [6]. The raw eye gaze points 
contain the (x, y) coordinates indicating where the gaze of 
each test subject was focused. The total number of gaze 
points for each NDAR test subject is inconsistent and vary 
in total number. In order to analyze each test subject’s gaze 
over the same period of time and construct a feature vector 
of consistent size, the first 2580 gaze points were chosen. 
This number corresponds to the minimum number of gaze 
points recorded among all test subjects. For this proposed 
feature descriptor, no pre-processing is performed on the 
gaze points; raw gaze data was used. 

Along with the raw eye gaze data, the NDAR provides 
eye gaze fixation information. Average fixation was 
calculated by dividing the total length of fixations over the 
total number of fixations per subject. Average fixation 
length was used as subject’s with autism tend to fixate on 
images for a longer amount of time [16]. For example, the 
average fixation of one test subject classified with a medium 
ASD risk has an average fixation length of approximately 

0.6 seconds, while another subject at high risk has an 
average fixation length of 0.8 seconds. 

The last two feature descriptors are age and gender. 
Both male and female genders are represented in the NDAR, 
with ages ranging from 2 to 132. There are a total of 91 
female subjects, and 166 male subjects. Section 4.1 and 
table 1 give detailed statistics on age and gender, as well as 
our method used to account for large age ranges. Using the 
four different feature descriptors described, we then created 
one feature vector, for each subject, to be used as training 
data to each of the three classification techniques (described 
in the next section). The total length of each feature vector is 
2583 (eye gaze points + age + gender + average fixation 
length). 

 

Using the proposed feature descriptors detailed in section 2, 
we next propose the use of three different machine learning-
based classifiers for help with gaze-based autism 
classification. These classifiers are (1) Random regression 
forests [4]; (2) C4.5 decision trees [14]; and (3) PART [7]. 
Each of the classifiers are detailed in the following 
subsections. 
 

Regression trees [3] are a powerful tool used for 
classification, which classify by splitting a larger problem 
into smaller ones that can be solved with simple predictors. 
Each node of a regression tree represents a question, the 
answer to which directs towards the left or right child. When 
they are trained the data is clustered so that simple models 
can achieve high accuracy. However, it has been shown that 
regression trees are prone to overfitting. By using a 
collection of randomly trained trees, Breiman [4] found that 
this overfitting can be overcome. Random forests work by 
constructing multiple, randomly trained, regression trees. 
The mean classification of each of the trees is then taken as 
the output. Random regression forests have been used in 
other fields such as gesture recognition [17]. This success in 
classifying human data, their ability to overcome overfitting, 
their power for classification, and their speed, makes them a 
good fit for our proposed autism classification scheme. 

The C4.5 algorithm was developed by Quinlan [14], which 
is an extension of ID3 algorithm [15]. It is a statistical 
classifier that builds decision trees based on information 
entropy. At each node of the tree, the algorithm looks to 
split the subsets based on the most information gain. From 
all of the available attributes, the one that has the highest 
information gain makes the decision. The algorithm then 
recursively does this for each of the available subsets that 
are left. The C4.5 algorithm has multiple stopping criteria 
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including (1) All samples belong to the same class; (2) there 
is no information gain from the attributes at the current 
node; and (3) an instance of a class type that has not been 
seen before occurs. The C4.5 algorithm is able to handle 
both discrete and continuous data, and once the tree is 
created it attempts to remove branches that don’t help 
(prunes the tree). Because of this they are also a good choice 
for autism classification. 

The PART algorithm [7] makes use of partial decision trees 
and a separate and conquer strategy for rule induction. It 
performs this by first building a rule based on the training 
set, then removing all of the instances that the rule covers. It 
then looks at the remaining instances and recursively creates 
rules and removes the instances associated with each rule 
until there are no instances left. In order for PART to make 
a rule it builds a pruned decision tree with the current set of 
instances, which haven’t been removed, and the leaf that has 
the largest amount of coverage is turned into a rule. The rest 
of the tree is then discarded. In doing this the algorithm can 
avoid over-pruning by only generalizing once all of the 
subtrees have been expanded. These algorithm features help 
make for a third promising choice for autism classification. 
 

 
To evaluate our proposed approach for classifying autism 
using gaze data and demographic information, we make use 
of the National Database for Autism Research (NDAR) 
[11]. Using the features detailed in section 2 we use each of 
the classification techniques detailed in section 3 to conduct 
the experiments. The database, experimental design, and 
results are detailed in the following subsections.  

Test subject data was obtained from the National Database 
for Autism Research (NDAR), an extensive collection of 
measurements published by the National Institute of Health 
[11]. This database contains information on each test 
subject, the stimulus the subject viewed, and the subject’s 
eye gaze while viewing the stimulus. Metrics include the 
age and gender of each test subject, details about calibration 
and configuration of the gaze monitoring system, a brief 
description of the stimulus, gaze point x and y coordinates, 
and gaze fixation classification (e.g. how long a fixation was 
recorded). Data also includes a class indicating whether the 
test subject is diagnosed with autism or, the subject’s 
relative risk (labeled as low, medium, high, or ASD) for 
being diagnosed. We tested our proposed classification 
scheme on a total of 257 subjects from the NDAR with a 
total of 91 subjects being female and 166 being male. Table 
1 list details on the age ranges, risk types in those ranges, 

and the total number of subjects for each. See figure 2 for 
gaze plots of low, medium, and high risk subjects. 
 

Table 1. Subject information from [11]. 

F low;  
high 

45 
M 49 

F low; 
medium; 

high 

17 

M 54 
F 

medium
27 

M 41 
F 

medium 
2

M 2
F NA NA 
M ASD 20 

 

(a) (b) (c)
Figure 2. Eye gaze for (a) low risk; (b) Medium Risk; and (c) high 

risk subjects from the NDAR [11]. 
 

In order to evaluate the efficacy of our proposed features we 
conducted experiments using three separate classifiers; 
PART [7], C4.5 [14], and random regression forests [4]. It 
should be noted that there are some abnormalities in the 
NDAR data including subjects of 129 and 132 years of age, 
and all of the subjects older than 60 were diagnosed with 
ASD. In order to acknowledge these abnormalities, tests 
were conducted on two separate sets of data. The first 
contains all 257 subjects and the second contains all subjects 
ages 2-40 (237 total subjects). For both of these 
experiments, all gaze and demographic feature descriptors 
were concatenated into one feature vector for each subject. 
Using 10-fold cross validation, data is randomly split into 10 
subsets. One was used for testing and the other nine are used 
for training. This is done for each of the subsets being used 
as the testing data with the average error used. 

Using this classification scheme, the training data 
where outliers were removed (ages 60+), yielded a max 
classification rate of 96.2% using the PART classifier. 
Using all of the training data, we obtained a max 
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classification rate of 94.16% using the PART and C4.5 
classifiers. The equal classification rate of these two 
algorithms may be attributed to their use of decision trees, 
however, they did not achieve the same results when the 
outliers were removed. This leaves an open question of 
which classification scheme can best be used to help classify 
autism. See table 2 for a comparison each classifier and 
tables 3-8 for the confusion matrices of each classifier. 
 

Table 2. Classification rates of 3 tested classifiers on [11]. 

94.16% 94.16% 91.05% 

96.2% 94.94% 93.25% 

Table 3. Confusion matrix, from PART [7], of subjects of ages 1-
40 from [11]. 

41 0 6 
0 131 0 
3 0 56 

Table 4. Confusion matrix, from PART [7], of all subjects tested 
from [11]. 

39 0 8 0 
0 130 0 1 
6 0 53 0 
0 0 0 20 

Table 5. Confusion matrix, from C4.5 [14], of subjects of ages 1-
40 from [11]. 

40 0 7 
0 131 0 
5 0 54 

Table 6. Confusion matrix, (C4.5 [14], of all subjects tested [11]. 

39 0 8 0 
0 130 0 1 
6 0 53 0 
0 0 0 20 

Table 7. Confusion matrix, from random regression forest [4][3], 
of subjects of ages 1-40 from [11][10]. 

38 4 5 
0 131 0 
2 5 52 

Table 8. Confusion matrix, from random regression forest [4], of 
all subjects tested from [11]. 

37 2 8 0 
0 131 0 0 
3 4 52 0 
0 6 0 14 

Tables 3-8, show that for each of the classifiers tested, 
medium (out of low, medium, and high risk) has the highest 
classification rate, with only one misclassification. For the 
PART and C4.5 classifiers, the ASD diagnosis was 
successfully classified 100% of the time, with random 
regression forests successfully classifying 70% of the testing 
data. These results are encouraging as it agrees with various 
studies [12][6][2] that gaze can be used as a marker for ASD 
diagnoses. It also points to age being a significant factor in 
being able to diagnose ASD, as all subjects with ASD, in the 
NDAR, were over 60 years of age.  

 
We have presented a novel approach to classifying autism 
by constructing features from a subject’s raw eye gaze 
points (x,y), average fixation length, and demographic 
information such as age, gender. Our results on the NDAR 
[11] are encouraging with a max classification rate of 
96.2%. We have the discussed the potential use of three 
different machine learning classifiers, (1) Random 
regression forests [4]; (2) C4.5 decision trees [14]; and (3) 
PART [7], to help with classifying autism. While the results 
are encouraging, we are interested in testing on larger 
datasets, especially those including predominantly children, 
as early intervention in ASD is crucial. 

Our future work includes extending our current feature 
descriptors to include average gaze velocity over time, as 
well as, the potential for using deep learning approaches for 
classifying autism. Recently deep learning has been 
successfully used to increase the performance of eye 
tracking systems [10]. Future work also includes other non-
rule-based classifiers. We also want to know which features 
are important for classifying autism. We have shown that 
gaze and demographic information can be used to classify 
autism. The next step is to determine which of these exact 
features are the strongest for classification.  

We are also interested in a multi-modal approach to 
classifying autism. It has been shown that children 
diagnosed with ASD have difficulty with coordination 
which adversely influences gait [5]. We are currently 
exploring combining gaze, gait, and demographic feature 
descriptor to help classify autism. While the focus on this 
work is to classify autism, we are also investigating the use 
of gaze to classify patients with schizophrenia, as they have 
been shown to have problems with gaze perception [9]. 
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