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ABSTRACT 

 
In this paper, we propose a method for automatic hand 
gesture recognition using a random regression forest with a 
novel set of feature descriptors created from skeletal data 
acquired from the Leap Motion Controller. The efficacy of 
our proposed approach is evaluated on the publicly available 
University of Padova Microsoft Kinect and Leap Motion 
dataset, as well as 24 letters of the English alphabet in 
American Sign Language. The letters that are dynamic (e.g. 
j and z) are not evaluated. Using a random regression forest 
to classify the features we achieve 100% accuracy on the 
University of Padova Microsoft Kinect and Leap Motion 
dataset. We also constructed an in-house dataset using the 
24 static letters of the English alphabet in ASL. A 
classification rate of 98.36% was achieved on this dataset. 
We also show that our proposed method outperforms the 
current state of the art on the University of Padova 
Microsoft Kinect and Leap Motion dataset. 
 

Index Terms— Gesture, Leap, ASL, recognition 
 

1. INTRODUCTION 
 
Automatic hand gesture recognition has a wide range of 
applications in fields such as human-computer interaction, 
computer gaming, automatic sign language recognition, and 
robotics. There has been some success with hand gesture 
recognition using wearable devices [11][14], however, 
vision based methods [10][4][8][3][9][7] are less invasive 
and allow for more natural interaction. With the release of 
affordable consumer grade cameras such as the Leap Motion 
Controller (Leap), vision based methods can be more readily 
explored. Recently, there has been some success with using 
3D motion trajectory captured from the Leap to classify 
both letters and numbers [4]. Using the Leap Motion and a 
support vector machine Marin et al. [13] achieved 81.5% 
gesture classification accuracy, using Leap Motion features 
alone, on the University of Padova Microsoft Kinect and 
Leap Motion dataset [12][13].  

The Leap makes use of two cameras and three infrared 
LEDs, which give an interactive area of 2.6 feet above the 
controller and 2 feet on each side. It applies mathematical 
algorithms to the raw sensor data acquired from the 
cameras. The Leap is designed specifically for hand tracking 

 
Figure 1. Proposed gesture recognition overview. 

 
and because of this it is natural to use this camera for hand 
gesture recognition. The Leap skeletal tracking model gives 
us access to the following information that we use to create 
our feature descriptors; (1) palm center; (2) hand direction 
(3) fingertip positions; (4) total number of fingers (extended 
and non-extended); and (5) finger pointing directions. Using 
this information from the Leap we propose six new feature 
descriptors which include (1) extended finger binary 
representation; (2) max finger range; (3) total finger area; 
(4) finger length-width ratio; and (5-6) finger directions and 
distances. Each of these feature descriptors are detailed in 
section 2. Once we have each of the features descriptors 
they are concatenated into one feature vector which is then 
used as input to a random regression forest to classify the 
gesture. See figure 1 for an overview of our system. A 
summary of the main contributions of this work follows: 
 

(1) We propose six novel feature descriptors, captured 
from the Leap; extended fingers binary 
representation, max finger range, total finger area, 
finger length-width ratio, and fingertip directions 
and distances.  

(2) We propose the use of a random regression forest to 
classify hand gestures from skeleton-based feature 
representation constructed from 3D information 
capture from the Leap. 

(3) We test our new proposed features and classification 
scheme on the publicly available dataset [12][13], as 
well as a new Leap Motion dataset that contains the 
24 static letters of the ASL alphabet.  

(4) We show the power of our proposed features and 
classification scheme by comparing to state of the 
art. 



2. LEAP MOTION FEATURE DESCRIPTORS 
 
Using two cameras and three infrared LEDs, the Leap can 
infer the 3D position of a subject’s hand. As such it is a 
natural fit to use the Leap for gesture recognition, as 
relevant information about each gesture can be extracted 
from the controller. This information can be used to enhance 
hand gesture classification accuracy. Given this information 
we propose six new features to help with hand gesture 
recognition, which are detailed below. 

 
2.1. Hand scale factor based on number of fingers 
 
In order for our proposed features to remain scale invariant, 
those features need to be scaled. Our hand scaling factor is 
based on the current number of fingers, the fingertip 
positions of the extended fingers, and the palm center. We 
calculate our new scale, s, by first finding the average 
extended fingertip position as 

 

𝐴𝐴𝐿𝐿 =
∑ (𝑓𝑓𝐿𝐿𝑖𝑖)
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

(1) 

 
where n is the number of extended fingers, 𝑓𝑓𝐿𝐿𝑖𝑖 is the 
fingertip positions of the extended fingers. Given this 
average fingertip position we then find the distance from 
this new position to the palm center as 

                             
s=�(𝐴𝐴𝐿𝐿𝐿𝐿 − 𝑃𝑃𝐿𝐿𝐿𝐿)2 + (𝐴𝐴𝐿𝐿𝐿𝐿 − 𝑃𝑃𝐿𝐿𝐿𝐿)2 + (𝐴𝐴𝐿𝐿𝐿𝐿 − 𝑃𝑃𝐿𝐿𝐿𝐿)2 (2) 

 
where (𝐴𝐴𝐿𝐿𝐿𝐿,𝐴𝐴𝐿𝐿𝐿𝐿 ,𝐴𝐴𝐿𝐿𝐿𝐿) is the 3D average fingertip position 
and (𝑃𝑃𝐿𝐿𝐿𝐿 ,𝑃𝑃𝐿𝐿𝐿𝐿 ,𝑃𝑃𝐿𝐿𝐿𝐿) is the 3D palm center. 
 
2.2. Extended finger binary representation 
 
Our extended finger binary representation is a feature 
descriptor that details exactly which fingers are extended for 
the current gesture. For this we create a 5-bit feature vector 
where each bit represents one of the fingers. The most 
significant bit (MSB) represents the thumb and the least 
significant bit (LSB) represents the pinky. We use a binary 
representation of the extended fingers to populate our 
feature vector as 

 

  𝑒𝑒𝑏𝑏𝑖𝑖 = �1,             𝑓𝑓𝑖𝑖 ∈ 𝐸𝐸,
0,    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.           (3) 

 
where 𝑒𝑒𝑏𝑏𝑖𝑖 is the binary finger bit,  𝑓𝑓𝑖𝑖 is the current finger, E 
is the set of extended fingers, and i = [1,5] for each finger. 
 
2.3 Max finger range 
Our max finger range feature allows us to classify gestures 
that vary in size based on the number of fingers. For 
example, a gesture that has one finger extended vs all five 
fingers will have a different max finger range. Using the 
palm center, and fingertip positions of the extended fingers 

we construct our max finger range feature descriptor. We 
take the max (x,y) values of the extended fingertip positions 
with respect to the palm center. As an example, a small max 
x value can indicate that the middle finger is extended, 
while other fingers further from the palm center, such as the 
pinky, are not. A large max x value can indicate the opposite 
that the middle finger is not extended and the pinky is.  
 
2.4 Total finger area 
 
Total finger area also gives us information about where the 
fingers are pointed. Using the extended fingers, we calculate 
the Euclidean distance between all combinations of 
extended fingers. We then look at which two extended 
fingers give us the largest calculated distance and create a 
triangle between these two fingertip positions and the palm 
center. Given this triangle, we calculate the area, which is 
divided by the number of extended fingers. This allows us to 
differentiate between two distinctly different gestures that 
have the same area. For example, all gestures that have the 
pinky and thumb extended could have the same finger area. 
We can overcome this by making this area in relation to the 
number of extended fingers. See figure 2(a) for an example. 
 
2.5 Finger length-width ratio 
 
Finger length-width ratio is complementary to our proposed 
total finger area, as it allows us to get the total ratio between 
all extended fingers. Our finger length ratio is an extension 
of the work detailed in [6], where Ding et al. use a length-
width ratio to differentiate the difference between the 
number 0 and the alpha O. We expand upon this idea to 
create a finger length ratio for all gestures. Similar to the 
area, we look at all combinations of distances between each 
of the extended fingertip positions. We define the width, w, 
as the maximum distance between all combinations of 
extended fingertip positions. The length is calculated as the 
distance from the palm center to each of the extended 
fingertip positions. The length, l, is defined as the max 
calculated distance. Our new finger length-width ratio, r, is 
defined as 𝑒𝑒 = 𝑙𝑙/𝑒𝑒. See figure 2(b) for an example. 
 
 

 
(a) (b) 

 

                 

Figure 2(a). Total finger area on RGB image. Figure 2(b). Finger 
length-width ratio on RGB image. Note: these images modified 
from [12][13] for illustration purposes only. 



2.6 Fingertip directions and distances 
 

The direction that the extended fingers are pointing, along 
with the distance between the palm center and the fingertip 
positions can be an important feature for classifying 
gestures. This allows us to tell if the fingers are curled under 
to pointing straight up, and each direction in between. As 
previously detailed, the Leap SDK gives us the direction 
that each of the fingers are pointing. The directions are 
directly inserted into our feature vector. We also propose the 
use of another complimentary feature to the fingertip 
directions. We refer to this new feature as the fingertip 
distances. During calculation of our other Leap features, we 
must calculate the distance from the palm center to each of 
the fingertip positions. We use these calculated distances as 
a feature descriptor to help us classify different gestures.  

 
3. EXPERIMENTS AND EVALUATION 

 
We conducted experiments on the publicly available 
University of Padova Microsoft Kinect and Leap Motion 
dataset [12][13], which consists of hand gestures captured 
from both the Leap and Kinect. It contains 10 different 
gestures performed by 14 different subjects a total of 10 
times each for 1400 different samples. Each sample includes 
depth and RGB images, the raw depth data, and a csv file 
that includes 20 features to classify gestures.  See figure 3 
for sample images of the 10 gestures from this dataset. 

We also constructed an in-house dataset using the 24 
static letters of the alphabet in American Sign Language. 
The dataset consists of 14 subjects performing each gesture 
10 times for a total of 3360 samples. This dataset contains 
Leap skeletal data in CSV format. See table 2 for listing of 
features and figure 4 for example images. This dataset is 
publicly available for comparisons. 

  

 
Figure 3. Sample images from [12][13]. Note: RGB images shown 
only for illustration purposes. 
 
3.1 Random regression forests 
 
Regression trees [2] are a powerful tool that can be used for 
classification. Regression trees work by splitting the 

problem into smaller ones that can be solved with simple 
predictors. Each node of the tree is a question whose answer 
directs towards the left or right child. During training the 
data is clustered so that simple models can achieve good 
results. While regression trees can give good results, they 
are prone to overfitting. Breiman [1] found that the 
overfitting can be overcome by a collection of randomly 
trained trees. Random forests work by constructing multiple, 
randomly trained, regression trees and taking the mean 
classification, of those trees, as the output. Schmidt et al. 
[15] were able to successfully use random regression forests 
to determine a set of gestures from Leap data. Due to this 
and the ability of random forests to overcome overfitting, 
their speed, and power for classification they are a natural fit 
for our gesture classification scheme. 
 
3.2 Exhaustive feature evaluation 
 
In order to evaluate the efficacy of our proposed features, 
we did an exhaustive evaluation of all combinations of our 
feature descriptors. For all possible combinations of our 
Leap features we create a separate feature vector. For the six 
Leap features proposed in section 2, there were a total of 63 
possible feature vectors. All feature vectors were 
constructed for all 1400 samples available in [12][13]. A 
random regression forest was used for our hand gesture 
classification, where 10-fold cross validation was used. In 
this classification scheme, the data is randomly split into 10 
subsets. In these subsets, one is used for testing and the 
other nine are the training data. This is done for all of the 
subsets, where each is used as the testing data. The average 
error across all trials is then used.  

Using this classification scheme resulted in 100% 
classification for all 1400 samples.  This classification rate 
can be attributed to the proposed extended finger binary 
representation. When the gestures classified use different 
fingers, as is the case for all of [12][13], this feature is 
highly accurate. When this feature was included in any of 
the 63 tested feature vectors the classification rate was 
always 100%. Due to this, we also make note of our highest 
classification rate without the extended finger binary 
representation, which was 81.71%. This classification rate 
was obtained by using the combination of max finger range, 
total finger area, and finger length-width ratio. See table 1 
for comparisons of our results with those in [13]. As can be 
seen from this table, even without our extended finger 
binary representation feature, our Leap features still 
outperform current state of the art, showing the 
classification accuracy of our proposed approach.  

 
Table 1. Comparisons with [13]. 

Method Classification 
Rate 

Marin et al. [13] 81.5% 
Proposed with binary representation 100% 
Proposed without binary 
representation 81.71% 



3.2 ASL alphabet recognition 
 
In order to test our proposed method on more varied 
gestures, we use our in-house dataset containing the 24 
static letters of the alphabet. The alphabet in ASL can be 
challenging for automatic hand gesture recognition due to 
the similarity of some of the letters, however, our proposed 
method was still able to accurately classify the majority of 
the 24 tested letters. We used the same 10-fold cross 
validation classification pipeline as our experiments on 
[12][13]. The classification rate on all 3360 samples was 
98.36%. There are some instances in the American Sign 
Language where the letters look extremely similar, yet our 
proposed classification scheme was still able to accurately 
classify those letters. 

In classifying each letter, t was incorrectly classified as 
n more than any other letter. While t has the lowest 
classification rate with 92.8%, with it being incorrectly 
classified as n 3% of the time, the classification rate for n 
was not the same. It had a classification rate of 98.5% and it 
was only misclassified as t once. This disparity could be 
attributed to the Leap. While the Leap is a powerful tool for 
gesture recognition, it can have some incorrect data as it can 
get confused as to which finger is where, as well as 
incorrectly showing a finger as bent or extended when the 
gesture is showing the opposite. 

The confusion matrix of all 24 evaluated letters of our 
ASL dataset is shown below in table 3. Each letter has 140 
samples. The confusion matrix details the number of times 
each of the letters were both correctly and incorrectly 
classified and with what letters. 
 

Table 2. Listing of Leap features from ASL dataset. 
Feature Data Type Feature type 
Extended fingers Binary Fingers (5) 
Finger directions 3D vector Fingers (5) 
Fingertip positions 3D vector Fingers (5) 
Extended fingertip positions 3D vector Fingers (5) 
Hand direction 3D vector Hand 
Palm normal 3D vector Hand 
Palm Position 3D vector Hand 
Number of fingers Unsigned Range (1-5) 

 

 
Figure 4. Example images from in-house ASL dataset (from left to 
right A, C, G, L, Y). NOTE: RGB images shown only for 
illustration purposes.  

Table 3. Confusion matrix of the 24 evaluated letter of ASL. 

 
 
As can be seen from the confusion matrix many of the 

letters were misclassified as other similar letters. For 
example the letter d was only misclassified twice with the 
letter r. This misclassification can be attributed to the 
similarities of the two letters the incorrect data that can be 
acquired from the Leap.  

 
4. DISCUSSION AND FUTURE WORK 

 
We have presented a method for hand gesture recognition 
that uses a random regression forest with feature descriptors 
created from Leap data including an extended finger binary 
representation, finger ratio and area, a finger length-width 
ratio, and finger directions and distances. We have shown 
that our proposed method outperforms current state of the 
art on a publicly available dataset [12][13]. We have also 
created a new dataset that consists of 24 static letters of the 
American Sign Language. Our experiments on this dataset 
are encouraging with a classification rate of 98.36%.   

While the current results are encouraging, we are 
looking at multiple extensions of this work, including 
working with more challenging datasets and recognizing 
dynamic gestures by incorporating the gesture’s velocity 
vector as [5] has had some success with this. We are 
interested in creating 3D statistical shape models from the 
3D hand data captured from the Leap. In doing this we 
could accurately model variations in the different gestures to 
use for classification. We are also investigating real-time 
functionality in virtual reality applications, as devices such 
as the Oculus Rift can easily be integrated with the Leap. 
There has also been success with using deep learning and 
3D depth data captured from the Microsoft Kinect to 
recognize hand gestures [16][17]. We are currently 
investigating using deep learning with our features collected 
from the Leap. 
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