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ABSTRACT 

 
Dynamic modeling of facial appearances and sight 

directions are demanded for HCI and multimedia 

applications. Traditional approaches for face tracking and 

eye tracking from 2D videos do not involve explicit facial 

modeling. In this paper, we propose to use an explicit 3D 

model to model the dynamic facial appearance as well as 

the eye shape to estimate the viewing direction. We apply 

active appearance models for local region tracking, and use 

a scale-space topographic representation for frame model 

instantiation. The individualized 3D models across video 

sequences allow us to estimate the iris viewing orientation 

dynamically. The proposed framework has been realized 

and tested in a person-independent fashion for AAM 

tracking and model instantiation using a single camera.  

 

1. INTRODUCTION 

 

Facial appearances and sight orientations can be modeled 

in a 3D space. Existing 3D dynamic imaging systems  [6] 

 [13] require a rigorous setup (e.g., short range of capture, 

user intervention for calibration of multiple cameras, lengthy 

pose-processing, and strict user cooperation, etc.), thus 

limiting their applications for human computer interaction. 

In this paper, we present a system to model facial dynamic 

appearance and eye sight direction using a single video 

camera. We create dynamic 3D models from tracking 

information obtained from active appearance models and 

scale-space topographic features, and map them to a 3D 

space to create a 3D representation for each frame of a face 

video. We model both the 3D facial region and 3D iris 

region dynamically and explicitly, allowing an accurate 

estimation of eye sight directions through a dynamic video. 

The system framework is outlined in Figure 1.  

To model a face and its iris in a dynamic 3D space, 

feature tracking is the first step needed for the topographic 

model creation. Our system allows the user to either track 

the entire face or the subject’s eye region separately. The 

user can select which model they would like to use (face or 

eye). Here we use an active appearance model (AAM)  [2] to 

track 459 feature points which are defined in the facial 

region. Since the subsequent eye modeling requires a multi-

scale space topographic representation and multi-size 

surface patch fitting for topographic label classification, we 

need to restrict the region of interest for efficient 

computation. Therefore we further track 8 landmarks to 

determine the region of interest for eyes. 

 

 
 

Figure 1:  system diagram  

 

Extended from our previous work on topographic analysis 

for facial feature modeling  [11]  [12], we propose a new 

scale-space topographic feature representation approach to 

model the dynamic facial appearance and iris sphere 

explicitly. We use a 3D geometric reference model 

(including a 3D facial surface mesh and a 3D eye mesh) to 

model individual faces and individual eyes. A multi-step 

dynamic mesh adaptation method is applied on both facial 

regions and eye regions to instantiate the model across video 

sequences. Note that unlike the conventional methods  [4] 

 [1] [5] [7] [8] for eye tracking and eye gaze estimation, which 

have used 2D holistic based approaches or local component 

based approaches, we estimate the eye viewing direction 

through the explicit 3D iris modeling. This allows for more 

flexible and reliable eye sight detection under various poses, 

expressions, and imaging conditions. The rest of the paper 

will describe the components for tracking and modeling 

separately.  

 

2. TRACKING WITH PERSON-INDEPENDENT AAM  

 

Active appearance models were introduced by Cootes et 

al.  [2]. It consists of two separate types of models; one is the 

variation of the face shape, the other is the variation of the 

gray level of that shape. These two models are combined 

together to create a statistical appearance model. During the 

training phase the user manually selects landmarks that 

correspond to the most important features on each of the 

images that will be used for training. After the landmarks are 



selected each of the landmarks from the images in the 

training set are warped to match the mean shape. Each set of 

landmarks are represented as a vector and PCA is applied to 

them. This can be approximated by the following formulas:  

sscQxx +=  for shape and 
ggcQgg +=  for texture. In the 

shape formula x  is the mean shape, Qs represents the 

modes of variation and sc  defines the shape parameters. In 

the texture formula g  is the mean gray level. Qg represents 

the modes of variation and 
gc defines the texture parameters. 

In various works pertaining to active appearance models 

95% - 98% of the variance is usually kept. To conduct our 

experiments we chose to retain 95% of the variance. 

To track the entire face 459 landmark points are used 

that cover the entire face (Figure 2 (b)). To create a training 

model where each image contained 459 landmarks would be 

a cumbersome and time consuming process. To alleviate this 

challenge we select 92 key points in each of the training set 

images (Figure 2 (a)). We then interpolate to the required 

459 points to track and eventually create the 3D model. The 

interpolation is done using a Catmull-Rom spline.  

 

 
                      (a)                                   (b)                              (c) 

Figure 2: (a) original 92 key points; (b) interpolated 459 points; (c) 8 

points selected for eye region 

 

To track the eye region the model consists of 8 key 

points around the eyes (Figure 2 (c)). The points create a 

“boxed in” region around both of the eyes. This region 

allows us to set the ROI for a separate eye tracking and eye 

model creation.  

 

3. SCALE-SPACE TOPOGRAPHIC 3D MODELING  

 

3.1. Dynamic 3D appearance face modeling 

Given the feature points tracked, we apply a reference 

model to align with the tracked points. However, in order to 

create a 3D model representation for each individual frame, 

and to estimate the eye sight orientation, we deform the 

reference model into the non-rigid (non-feature) regions of 

the face. To do so, we extend our previous work based on an 

adaptive mesh  [12] to a hierarchical topographic scale-

space. Here we used three-levels of topographic 

representations with coarse, medium, and fine structures 

respectively.  

We treat a face image as a topographic terrain surface, 

and each pixel can be categorized into one of the twelve 

primitive surface features [10]. The composition of these 

basic primitives provides a fundamental representation of 

different skin surface details. Based on the topographic 

primal sketch  [10] we have developed a topographic face 

labeling approach to represent and model facial surfaces, 

and created individual face models by adjusting a generic 

model  [12]. Here is the brief overview of our existing 

approach. Given an input image, we can determine the 

topographic feature on each pixel location using a surface 

patch approximation approach  [10].  A continuous surface 

f(x,y) is used to fit the local N by N patch centered at (x,y) ) 

with the least square error. The topographic label is 

classified according to the extrema values of the second 

directional derivative of the surface. After obtaining the 

first-order and second order derivatives at (x; y), we can 

construct a 2 by 2 Hessian matrix  [10]. The feature labeling 

is based on the values of eigenvalues and eigenvectors, and 

the gradient magnitude  [12]. 

The results of topographic labeling represent different 

levels of feature details, depending on the variance of the 

Gaussian smoothing function (σσσσ) and the fitting polynomial 

patch size (N) (both σσσσ and N are known as scales). The 

topographic label map associated with the scales is defined 

as topographic scale-space. The existing applications of 

topographic analysis are limited in a “still” topographic map 

with a selected scale. As we know, every label may represent 

various features in a specific image.  Various features (e.g., 

features of the human face) may be “screened out” with 

various “optimal” scales. A small scale could produce too 

much noise or fake features. A large scale may cause the loss 

of important features. Our previous work also shows that too 

many fake features could cause the model adaptation to be 

distracted. More seriously, it could make the adaptation 

unstable, even causing it to not converge. Too few features 

will not attract the generic model into the local facial region 

with expected accuracy. Due to the difficulty to select an 

“optimal” scale, here we propose to represent the facial 

features in the topographic scale space, and modeling faces 

in a hierarchical structure from a coarse level, to a medium 

level, and a fine level.  Such a procedure will ensure the 

stable convergence of the dynamic mesh to the face region 

with a constraint of the upper level topographic space, thus 

resulting in an accurate estimation of 3D facial appearances 

and their sight directions.  

In our modeling process in the topographic scale-space 

domain, the dynamic meshes are moved by not only the 2-D 

external force (e.g. topographic gradient) but also the depth 

force (e.g. topographic curvature) for model deformation in 

multiple scales. Here we take the model as a dynamic 

structure in which the elastic meshes are constructed from 

nodes connected by springs. The external forces of the nodes 

are used to link the dynamic mesh to the observed face 

image data. The motion for the dynamic node system is 

formulated by a second-order differential equation  [9], 

where the node motion is driven by both internal force (e.g., 

mesh spring stiffness and topographic gradients) and the 

external force (e.g., topographic curvature and the 

topographic labels.)  



The model adaptation process is performed by three 

stages: a coarse adaptation onto the coarse scale of the 

topographic map, a medium scale adaptation onto a medium 

topographic map, and a fine adaptation onto the fine scale of 

the topographic map. The three stages employ the similar 

adaptation algorithm as described in  [12], except for 

additional constraints assigned to each level of adaptation. 

Specifically, the second stage (medium level) requires the 

node motion in the restricted local topographic region which 

has been defined by the coarse topographic map, and the 

node motion for the fine level adaptation is restricted in the 

regions which have been defined in the medium topographic 

map.  This strategy will prevent the mesh from distraction, 

and thus result in a stable adaptation.  As a result, the mesh 

can distribute itself in both salient feature areas and facial 

surface “wave” areas.  

 

3.2. 3D Iris modeling and 3D sight direction estimation 
Extending the topographic analysis of face features, we 

applied a scale-space topographic context to conduct an eye 

model adaptation within the eye region. The procedure is the 

same as the face model creation procedure as described in 

Section 3.1. After mapping a model onto the eye region, we 

can project a ray from the center of the eyeball sphere to the 

iris center to estimate the eye sight direction. The two 3-D 

points: centre of eye-ball (Pb) and centre of pupil (Pc) are 

illustrated in Figure 3 (upper row). The line linking the two 

points represents the direction of the eye sight. Note that 

given the four 3D points obtained from two eye-corners, 

pupil center (Pc), and an arbitrary point on the iris boundary, 

the eye-ball sphere parameters, center Pb and radius r, can 

be uniquely determined. 

        

 
Figure 3: Upper row: eye sight direction and the eye-ball sphere 

determination based on four points; Lower row: eye sight directions in 

different views.  

 

4. EXPERIMENTAL RESULTS 

In order to test the accuracy of our system we used three 

different cameras with different resolutions to capture and 

track our data. We tested our system with a low, medium, 

and high resolution setting. For our low resolution tests we 

used a Logitech QuickCam Orbit AF with a resolution of 

320x240 (as shown in Figure 5). We used a Sony network 

camera SNC-RZ30N with a resolution of 640x480 for our 

medium resolution tests (as shown in Figure 6). Finally, for 

our high resolution tests we used a Di3D  [6] capturing 

system that creates texture images with a resolution of 

1040x1392 (as shown in Figure 4).  

Although the eye region is contained in the entire face, 

we found that it is beneficial for us to track the eye region 

separately. Since the only information that we need is where 

the landmarks are located, we have found it easier to only 

select the landmarks around the eyes instead of extracting 

this information from the face. Also, there are instances 

where we found it difficult to successfully track a subject’s 

face but we were able to track the eye region. We believe 

that this is due to our use of a person-independent active 

appearance model. Gross et al.  [3] noted that it is harder to 

fit a generic AAM compared to a person specific AAM due 

to the high dimensionality of the shape model.  

 

4.1. Evaluations  

      In order to evaluate the accuracy of the geometric shape 

of our created models, we used the 3D dynamic range scans 

 [13] captured from Di3D imaging system  [6] as the ground-

true data for comparison (Figure 4).  

The ground true face model contains 35,000 vertices; 

our created model has about 2,900 vertices.  We used both 

3D range model scans and our generated models (300 frame 

models), and manually selected 92 feature points on each 

model in areas of mouth, facial contour, nose sides, nose 

bridge, eyes, eyebrows and cheek. After normalizing all the 

models into a range of (-50, +50) in three coordinates of x, y 

and z, we calculate the mean square error (MSE) between 

the two sets of 3D surface feature points. The result shows 

that the average MSE of 300 frames models is 6.74. This is 

much less than the MSE (=12.7) when we compare the 

coarse models to the range models. In addition, the 

estimated eye directions from our generated models are also 

compared to the eye directions of the range models. Among 

300 frames, 249 frames show less than 5 degree difference 

between two data sets.     

 
Fig 4: High-resolution video example. Upper:  range scans as ground-

truth; Lower: our generated models (3D meshes overlapped on 

textures).  

 

There are three major advantages of the proposed 3D 

model based approach: (1) the modeling procedure relies on 

the multiple-scale model adaptation in a global face space 

rather than very few individual points in local facial regions. 

It is more resistant to image noises under various imaging 

conditions; (2) the three-levels of topographic features allow 

the face and eye representations in a high level of detail, and 

(3) the eye sphere estimation is based on the four points 

including the eye center and eye corners and excluding the 



eyelid points. It has certain robustness to occlusion from 

eyelids. Unlike other conventional 2D tracking systems, our 

3D model based eye sight estimation does not require any 

calibration of cameras. 

 
Fig 5:  Low-resolution videos for two subjects. Upper three rows: 

tracked feature points; generated models; and detected eye sight 

directions (shown as red arrows). Lower four rows illustrate the 

results of a second subject. 

 

 
Fig 6: Fig 4:  Medium resolution videos for one subject. From top to 

bottom: tracked feature points; generated models; and detected eye 

sight directions (shown as red arrows).  

 

5. CONCLUSION AND FUTURE WORK 

We have presented a scale-space topographic modeling 

approach to model the dynamic facial appearance and eye 

sight directions. The experimental results are encouraging.  

While we are able to track face movements and eye sight 

orientations under various resolutions, backgrounds and 

expressions, the tested pose changes are still in a small 

range.  Our future work is to improve the tracking algorithm 

in order to handle the case of larger pose changes. For 

example, one method is to extend our tracking system by 

including multiple views of faces.  We will further evaluate 

the performance by comparing our approach to the other 

existing 2D based approaches. In addition, we will further 

develop a variable mesh resolution approach with a smaller 

number of tracking points in order to realize a real time 

application. 
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