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ABSTRACT 

 
In this paper, we propose a novel method for detecting and 

tracking landmark facial features on purely geometric 3D and 4D 

range models. Our proposed method involves fitting a new multi-

frame constrained 3D temporal deformable shape model (TDSM) 

to range data sequences. We consider this a temporal based 

deformable model as we concatenate consecutive deformable 

shape models into a single model driven by the appearance of 

facial expressions. This allows us to simultaneously fit multiple 

models over a sequence of time with one TDSM. To our 

knowledge, it is the first work to address multiple shape models as 

a whole to track 3D dynamic range sequences without assistance of 

any texture information. The accuracy of the tracking results is 

evaluated by comparing the detected landmarks to the ground 

truth. The efficacy of the 3D feature detection and tracking over 

range model sequences has also been validated through an 

application in 3D geometric based face and expression analysis and 

expression sequence segmentation. We tested our method on the 

publicly available databases, BU-3DFE [15], BU-4DFE [16], and 

FRGC 2.0 [12]. We also validated our approach on our newly 

developed 3D dynamic spontaneous expression database [17]. 

 

1. INTRODUCTION 

 
Detecting and tracking landmark features on 3D range data is the 

first step toward geometric based vision research for object 

modeling, recognition, visualization, and understanding. 

Applications in this area of research include 3D face recognition 

and expression interpretation for biometrics and human computer 

interaction [6]. With the rapid development of 3D imaging 

technologies, 3D range data is becoming one of the most popular 

modalities for applications in computer vision. While research in 

2D modality based tracking has produced a number of successful 

and widely used algorithms, such as Active Shape Model [3] and 

Local Binary Pattern [9], research in 3D modality based analysis 

still faces the challenges of 3D geometric landmark detection, 3D 

mesh registration, and 3D motion tracking. Therefore, there is a 

strong demand for novel and robust algorithms for handling 3D 

datasets. Morphable Model [2] is a successful algorithm for this 3D 

problem. Another commonly used method for registering two 

meshes is the Iterative Closest Point algorithm (ICP) [1].  
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This method relies on finding the closest pairs of points between 

the two meshes being registered; however, it shows limitations in 

handling largely deformed mesh models. X. Lu et al. [7] developed 

an approach using ICP to detect the nose tip and mouth corner 

landmarks to help register the meshes for classification. Wang et 

al. [14] used key facial landmarks selected semi-automatically to 

segment the face and perform facial expression analysis by 

evaluating the principal curvatures in those segmented regions. 

Active shape models (ASM) have been widely used to address 

the problem of landmark detection and tracking, although mainly 

on 2D data [3][4] or volumetric data [5] for medical data 

segmentation. In a 2D-based ASM, due to the lack of explicit 3D 

shape representation of texture data, the construction and tracking 

of an ASM relies on both 2D shape components and 2D texture 

components. The fitting process relies on a regression procedure 

guided by shape constraints and texture primitive constraints (e.g., 

edge, intensity, and color, etc.) The quality of the results, however, 

is limited by the accuracy of these constraints and the degree of 

pose variance.  

Recent work has addressed the problem of fitting a 

deformable model to 3D range data, however, the problem of 

fitting and tracking 4D range data remains largely unsolved. Sun et 

al. [13] used active appearance models (AAM) to track features of 

3D range models. However, the detection and tracking of facial 

features were performed on 2D videos, while the 3D features 

themselves were obtained by mapping the 2D features to the 

corresponding parts of the 3D models. Nair et al. [8] developed an 

approach to fit an active shape model to 3D face meshes using 

candidate landmarks for the inner eye corners and nose tip. Their 

active shape model is fit by finding a similarity transformation 

between the candidate landmarks of the mesh and the 

corresponding landmarks within their active shape model. Perakis 

et al. [11] compared candidate landmarks on the face mesh, 

obtained through shape index calculation, to their 3D active shape 

model. However, there is no single fitting or temporal fitting 

process for finding candidate landmarks. Zhao et al. [18] used a 

patch based method to fit a statistical facial feature model to 3d 

range data using probability. In all of the above approaches, static 

3D data was used for training and testing. None of the approaches 

investigate applications for 3D dynamic (aka 4D) range sequences.  

In this paper, we propose a method to construct a novel 3D 

temporal deformable shape model (TDSM) to detect and track 3D 

landmarks across 3D/4D model sequences. The new model is 

driven by the temporal expression appearance, and constructed 

from the temporal 3D point distribution, without use of textures. 

The temporal deformable shape models are built individually from 

different expression model sequences as well as multiple-frame 

sequences (e.g. fear, anger, happiness, sadness, surprise, and 



disgust). The basic method for model fitting relies on finding the 

closest points in the range mesh model that correspond to an 

instance of the TDSM, where an instance is defined as a sampling 

along the modes of variation in the TDSM. Whether a set of 

landmarks is considered an acceptable candidate for a good fit is 

determined by the variance of the TDSM weighted matrix. For 

each adaptation from the TDSM to the range mesh surface we 

compute a distance score between the newly detected landmarks 

and the original instance of the TDSM. The lowest score is 

considered the best fit to the range mesh model.  

Our primary contribution is the advancement of a 2D active 

shape model to a 3D temporal deformable shape model for fitting 

3D and 4D range data. The use of a TDSM allows us to adapt 

multiple input mesh models with a single temporal deformable 

shape model through one pass of the process. A TDSM also allows 

for inter-frame constraints on the fitting process with 4D data. This 

is due to the nature of any expression behaving from neutral, to 

onset, to peak, to offset, and back to neutral. To validate the 

efficacy of the TDSM, we apply the detected landmarks for both 

subject identification and expression classification on multiple 

public databases. We also evaluate the accuracy of 3D landmark 

detection through applications of 3D video segmentation.  

 

2. 3D TEMPORAL DEFORMABLE SHAPE MODEL 

 
3D range data exhibits shapes of facial surfaces explicitly. This 

shape representation provides a direct match with the 3D active 

shape model due to its inherent and explicit shape representation in 

3D space. In considering this property, our feature detection and 

tracking algorithm can rely solely on 3D geometric shape without 

assistance of any texture information, thus resulting in less 

sensitivity to pose and lighting variations.  

To take advantage of this property, we would like to model 

the shape variation, as well as the implicit shape constraints 

imposed between consecutive frames in a sequence. Given a 

training set of M mesh models each with N annotated landmarks, 

the data is separated into 3 groups consisting of the neutral, onset, 

or peak phases of a given expression. To construct a temporal point 

distribution model (TPDM), a parameterized model, S, is 

constructed where     
       

    
      

      
 .    

  is the ith 

landmark of the kth model, where   
     

    
    

   and 1 ≤ k ≤ M 

(M is the total number of training models). To construct this model, 

alignment of the training landmarks must be performed. To do so a 

modified version of Procrustes analysis is used [3]. 

Procrustes analysis determines a linear transformation that 

aligns two sets of points (shapes). It minimizes the distance D, 

which is a minimized summation of the squared errors. Once 

alignment has been performed, principal component analysis 

(PCA) is then performed on the aligned feature vector. This is done 

to estimate the different variations of all the training data in a 

k×N×3 dimensional space. For PCA, each shape deviation from 

the mean is calculated as 

        ̅  (1) 

Then the covariance matrix C is calculated: 
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This equation yields the modes of variation, V, of the training 

shapes along the principal axes. Given V and a weight vector, w, 

that controls the shape; we can approximate any temporal shape 

from the training data by: 

   ̅      (3) 

The weight vector, w, allows us to generate new samples by 

varying its parameters within certain limits. These limits are 

imposed to ensure only valid shapes are constructed (i.e. a correct 

facial expression). For the temporal deformable models we 

constrain the allowable shapes to be within 2 standard deviations 

from the mean, giving us: 

  √   √    √   (4) 

Where    is the ith eigenvalue of C. When approximating a new 

shape S, the temporal point distribution model is constrained not 

only by the variations in shape but also by the inter-frame 

constraints that the consecutive frames impose. Given a k-frame 

TDSM, k consecutive input mesh models are ensured to vary in a 

manner that is consistent with the TDSM. For example, we can 

assume that during the course of an expression, facial appearance 

is developed gradually. If we have a frame displaying a neutral 

expression at the start of the sequence, the next frame cannot 

display the peak of the expression, as there needs to be some form 

of the onset of the expression before the peak occurs. The feature 

vector will not allow the shape to have a neutral expression next to 

the peak. Therefore, during the adaptation of the TDSM, if we 

come across k mesh models that do not vary in a way that is 

consistent with our TDSM, we attribute this to noises or other 

anomalies. Figure 1 shows an example of a k-frame TDSM where 

N=83. 

 

Fig.1 Example illustration showing a k-frame TDSM where N=83. 

Top row shows fit mesh models, bottom row shows visual 

representation of TDSM vector. 

 

3. FITTING/TRACKING 3D/4D RANGE DATA 

 

3.1. Fitting 3D Range Data Using A TDSM 

 
When dealing with static 3D range data we can construct a TDSM 

where k=1, allowing us to fit a single frame in the absence of a 

sequence of frames. To fit the TDSM to 3D range data we create 

an off-line table of weight vectors (w) that will control the shape of 

the TDSM, each with a uniform amount of variance. We have 

chosen to instantiate the weight vectors off-line as this gives us 

more control over which shapes are constructed and to help ensure 

the new shapes are consistent within the allowable shape domain. 

Having this offline weight vector also allows us to speed up the 

fitting process as we can quickly find the instance of the TDSM 

that gives us the best fit. 

Once we have created each of the instances of the TDSM, 

they are then fit to the 3D input data. This is done by finding which 

vertex in the range mesh model corresponds to the closest point of 

each landmark in the TDSM instance. We are able to do a simple 

closest point search as the final Procrustes distance will be large if 

good points have not been found. This is a key difference between 



the TDSM and an active shape model. The TDSM does not require 

an explicit initialization phase as each fit is based on pure 

geometric data as well as the inter-frame constraints that every k-

frames impose. To find the closest points in the model, instead of 

using a brute force search each mesh is constructed as a k-d tree to 

speed up computation time. After we find the closest points for all 

landmarks in the model, we then determine if the newly detected 

landmarks for the TDSM instance correspond to an allowable 

shape based on the constraint that the weight vector (w) must fall 

within 2 standard deviations from the mean. To do this, we must 

transform our detected landmarks into the model parameter space 

by constructing a new w vector. Since equation (3) gives us 

   ̅      we can then find the corresponding w vector of the 

detected landmarks by the following: 

        ̅   (5) 

We then compare this new w vector with the allowable domain. If 

it is within this range it is accepted as a candidate model that will 

give us the best fit for the 3D range data. If it is outside of this 

domain it is discarded for the range mesh we are trying to fit. For 

the candidates that are acceptable, the TDSM instance that gave us 

these candidate landmarks, as well as the candidate landmarks 

themselves are saved. Once this is complete, each candidate model 

has a distance score computed between the newly detected 

landmarks and the TDSM instance. This distance score is the 

Procrustes distance, which is a metric used to determine the shape 

difference between two objects. Given the original instance of our 

TDSM            and the detected landmarks on the range 

data             the Procrustes distance can be defined as: 
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We find the Procrustes distance for each TDSM and its 

corresponding candidate landmarks on the range data for all 

candidate models. The smallest D value is considered the best fit. 

We are able to quickly find the smallest D due to our offline vector 

w, as the computation is linear in terms of the number of landmarks 

as shown in (6). Table 1 summarizes this algorithm. 

 

Table 1. Algorithm of 3D landmark detection. 

                                

Construct w vectors off-line  

Construct model instances from available w vectors 

     for each input range mesh do 

          for each model instance do 

               for each landmark in model do 

                             ) 

               end for 

                       ̅  

               if(  √   √    √    

                    save model 

               else then 

                    discard model 

               end if 

         end for 

         for each saved candidate do 

              for each landmark in model do 

                      ∑ √       
         

         
  

    

              end for 

         end for 

         Select shape model with smallest D for best fit 

     end for 

 

Figure 2 shows sample frames from the fitting process. Figure 3 

shows examples from the BU-3DFE database [15] with best and 

worst fits of the tracked points with comparison to the ground truth 

which are manually picked points. Note that the distance measure 

is very high for the worst fit. Figure 4 shows the feature detection 

and tracking after the pose rotations in roll, pitch, and yaw, 

illustrating robustness to pose variation.  

 

 
Fig. 2. Sample frames from fitting process (k=1). Higher D values 

show poor fits, lowest D selected as best fit (in blue).  

 

 
Fig. 3. Top row: best fit, Middle: worst fit, bottom: ground truth. 

 

 
Fig. 4. TDSM fit on models displaying roll, yaw, and pitch. 

3.2. Fitting 4D Range Data Using a TDSM 

 
Given an input sequence of M frames we can also detect and track 

landmarks using a TDSM where (k > 1, so-called multi-frame 

TDSM). Similar to the algorithm in Table 1, we extend the w 

vector to the length     where k is the number of mesh models 

and N is the number of landmarks. Each of the k mesh models to 

be fit is also represented as a k-d tree. The search is once again the 



closest points on each of the mesh models. However, instead of 

searching for all     landmarks in the TDSM for k mesh models, 

the TDSM is still searched using N landmarks for each individual 

model. Then, the k-frame TDSM (with N=83) is applied using the 

same criteria as in algorithm 1 in Table 1. Since any expression 

exhibits in the form of five durations: neutral, onset, peak, offset, 

and neutral, we can define the k-frame TDSM based on the 

samples of these durations. For example, in this implementation, 

we define a multi-frame TDSM with k=2. Given an expression 

with durations from neutral, to onset, to peak, to offset, and back to 

neutral, we construct 8 TDSMs for each expression, which is a 

combination of two frames in different durations. The 8 TDSMs 

where              are neutral to neutral, neutral to onset, onset 

to onset, onset to peak, peak to peak, peak to offset, offset to offset, 

and offset to neutral. Note that such an inter-frame relationship (or 

temporal constraint) makes the landmark detection across multiple 

frames occur simultaneously and accurately. Such a relationship is 

applicable to any expression with any speed. In other words, the 

multi-frame TDSM can handle variable speed expressions. The 

temporal constraint can filter out some impossible cases (e.g. 

neutral-peak, onset-offset, etc.), thus resulting in a consistent 

fitting. Any violation of the inter-frame relationship will cause a 

large fitting error. 

Using the 8 TDSMs we fit each one to k=2 frames in the 

expression sequence to find the best fit. A sample surprise 

expression sequence from the BU-4DFE database [16] can be seen 

in Fig. 5. Shown in Fig. 6 are sample frames from the BU-4DFE 

[16] and our newly developed 4D spontaneous expression database 

[17] in the second and bottom rows respectively. 

 

 
Fig. 5. Sample Sequence fit with k=2 TDSM. 

 

4. EXPERIMENTS AND EVALUATION 

 

4.1. Databases 

 
Four face databases have been used for our study, including two 

3D static model databases (BU-3DFE [15] and FRGC 2.0 [12]) and 

two 3D dynamic (4D) model databases (BU-4DFE [16] and our 

newly developed 4D spontaneous expression database [17]. Our 

new spontaneous database consists of 41 subjects (56% female and 

44% male), each consisting of 10 different spontaneous expression 

sequences. The expressions are elicited activities including film 

watching, interviews, experiencing cold pressor test, and others. 

Ten different spontaneous expressions are evoked (joy, 

embarrassing, surprise, disgust, nervous, scared, sad, pain, upset, 

sympathetic). Each task could have multiple expressions or mixed 

emotions. The database includes the 3D dynamic model sequences, 

texture videos, and annotated action units (AU). Figure 6 (bottom 

row) shows an example of the database (details are described in 

[17]). Table 2 lists details on each database.  

 

Table 2. Database Summaries. 

DB Modality Type #Sub #Exp #Models 

3DFE Static Deliberate 100 7 2500 

4DFE Dynamic Deliberate 101 6 606 Seq. 

FRG

C 2.0 

Static Deliberate 466 2 932(select) 

4D 

Spon. 

Exp. 

Dynamic Spontan. 40 10 240 seq. 

 
Figure 6 also shows the examples of FRGC 2.0 [12] (top row), 

BU-4DFE [16] second row, and BU-3DFE database [15] (third 

row). 

 

 
Fig. 6. Top row: FRGC 2.0(k=1), second row:BU-4DFE(k=2), 

third row:BU-3DFE(k=1), bottom row:4D spontaneous 

database(k=2). (Note: the tracked feature points are overlapped on 

the model sequences). 

 

4.2. Evaluation on Accuracy of Feature Points Tracking 

 

4.2.1. Error Statistics 

 
To evaluate the accuracy of the TDSM fitting algorithm we 

calculate the error between the fit landmarks and manually selected 

ground truth. To do so, we calculate the mean square error between 

the two sets of landmarks. We define the one-point spacing as the 

closest pair of points on the 3D scans (0.5mm on the geometric 

surface). If we treat the unit error being equivalent to 1 point-

spacing, the mean error can be computed by the average of point 

differences between the two sets. The average errors on the four 

databases are listed in Table 3. As can be seen from this table, the 

average fitting errors are much less when k > 1, this can be 

attributed to the extra temporal constraints that are imposed when k 

> 1. In the cases of the BU-4DFE and 4D spontaneous expressions 

databases k=2.Figure 7(a) shows the error statistics (average error 

and standard deviation for each of 83 key points) of the BU-3DFE 

database. Figure 7(b) shows the error statistics for the BU-4DFE 

database.  

Table 3.  Average error in points spacings. 

Database BU-3DFE BU-4DFE 
FRGC 

2.0 

4D 

Spontaneous 

Expressions 

Average 

Error 
5.6 1.5 6.7 1.6 



 

Fig. 7(a). Error statistics of 83 landmarks (BU-3DFE). 

 
Fig. 7(b). Error statistics of 83 landmarks (BU-4DFE). 

 

4.2.2. Error Statistics 

 
We have also compared our result of MSE of the average point 

spacings to the work reported in [13]. Our result of MSE on BU-

4DFE is 3.7, which shows a significant improvement over the 

result of 6.25 reported in [13]. Figure 8 shows the average errors 

on each of 83 points using our approach and the approach in [13]. 

 

 
Fig. 8. Comparison with Sun et al. [13]. 

 
In addition, we have also compared our results to the work 

reported by Nair et al [8] on the BU-3DFE database. Following 

their method we selected four landmarks (inner and outer eye 

corners) to compare to the ground truth. We achieved an error rate 

of 0.09 as compared to their rate of approximately 0.44. Figure 

9(a) shows our mean normalized error, and Figure 9(b) shows the 

normalized error of [8]. The evaluation shows that our feature 

tracking approach outperforms [8] as our approach does not rely on 

candidate landmarks to guide the fitting. 

 

 
Fig. 9(a). Mean normalized error of our TDSM method. (Key: 

AN=angry, DI=disgust, FE=fear, HA=happy, NE=neutral, 

SA=sad, SU=surprise). 

 
Fig. 9(b). Mean normalized error of Nair et. al [8]. 

 
4.3. Subject and Expression Verification 

 
To validate our proposed method, we apply it to subject 

verification and facial expression classification problems. We are 

able to compare each set of detected landmarks to the original 

instances of the TDSM, which is the same method as described in 

Section 3. Given Equation (6), we can find the distance D from the 

detected landmarks to each of TDSM instances. The smallest D 

value must correspond to a minimum threshold for a correct 

classification. As each of the TDSMs has been labeled as a subject, 

expression, and constraint (neutral, onset/offset, or peak), this 

verification and classification process is realized simultaneously.  

The BU-3DFE database consists of 4 levels of each 

expression for each subject, while the BU-4DFE and our 4D 

spontaneous expression databases both consist of sequences of 

multiple frames for each subject and expression. A majority voting 

strategy is implemented to help verify the subject and classify the 

expression. Given n frames that correspond to an expression of a 

subject, the subject is verified to be subject Y if it is voted as 

subject Y among the majority of those n frames. The expression is 

also classified as expression E if it is voted as expression E among 

the majority of those n frames. Experimental results for both 

subject verification and expression classification are as follows. 

 

4.3.1. Subject Verification 

 
Using the BU-3DFE database with n=4, we achieved an 

approximate subject verification rate of 94%. Using the BU-4DFE 

database, when k=2 and n=20, the verification rate is increased to 

98%. This increase can be attributed to two major factors: (1) the 

lower average error of using a multi-frame TDSM, and (2) the 

applied majority voting strategy. Begin able to use a larger n with 

the BU-4DFE database, for verifying a subject, allows us to 

remove noise and exclude high distance scores. 



 4.3.2. Face Expression Classification 

 
Using the BU-3DFE and BU-4DFE databases the six prototypic 

facial expressions are classified at the accuracy of 87% and 98% 

respectively. This increase in correct classification rates can also 

be attributed to expression based TDSM construction, lower error 

rates of the detected landmarks, and the applied majority voting 

strategy. Table 4 shows the confusion matrix of six expressions 

classification on BU-3DFE database. 

 

Table 4. Expression verification confusion matrix: BU-3DFE. 

 Angry Disgust Fear Happy Sad Sur-

prise 

Angry 90% 2% 0% 0% 8% 0% 

Disgust 8% 87% 1% 2% 2% 0% 

Fear 6% 6% 80% 5% 3% 0% 

Happy 5% 3% 5% 87% 0% 0% 

Sad 14% 1% 1% 0% 83% 1% 

Surprise 4% 1% 0% 0% 3% 92% 

 

4.4. Expression Segmentation (Action/Non-Action) 

 
A natural extension of our proposed method is the application of 

expression segmentation (or facial event detection) across a 

sequence of facial models. Each of the TDSM instances has the 

information of a subject, an expression, and the inter-frame 

constraint label. For the purposes of expression segmentation, we 

classify the results into one of two categories: either an action 

(onset/offset, and peak), or non-action (neutral expression). 

Comparing the fit landmarks with the TDSM instances, we are able 

to determine whether the current input model is performing an 

action or a non-action. Given the fit points of the mesh model, we 

compare them with the instances of our TDSM. The smallest D 

value from these comparisons is used as a measure for the 

classification. For example if our smallest D corresponds to the 

model classified as non-action, then the mesh model is classified as 

such. To analyze these results we manually segmented sequences 

from the BU-4DFE (see supplemental material for tracked and 

segmented sequence from this database) and 4D spontaneous 

expression databases and compared the automatic segmentation 

with this ground truth data. We achieved 86% and 81% correct 

classification rates in terms of action vs. non-action segmentation 

across all expressions for the BU-4DFE and 4D spontaneous 

expressions databases respectively. Note that the data is very 

challenging for all expressions in the spontaneous database. Figure 

10 illustrates an example of segmentation on this database. 

 

 
Fig. 10. An example of spontaneous expression segmentation 

(action/non-action) on the 4D spontaneous expression database.  

5. DISCUSSION AND FUTURE WORK 

 
In this paper, we have presented a new 3D temporal deformable 

shape model for both detecting and tracking key landmarks on 3D 

range mesh models. We have evaluated the accuracy of the feature 

detection and validated its utility for subject verification and 

expression classification in multiple public databases. We have 

also validated its utility for expression segmentation. 

In our future work, we plan to develop a method for 

estimating the direction of motion for the landmarks by including 

3D edge information. The proposed 3D TDSM is, in principle, 

extendible to other object types with 3D/4D mesh representation. 

Our future work will also include the evaluation on 3D feature 

detection on other geometric mesh databases.  
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