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Abstract

We present a new multimodal, context-based dataset for
continuous authentication. The dataset contains 27 sub-
jects, with an age range of [8, 72], where data has been col-
lected across multiple sessions while the subjects are watch-
ing videos meant to elicit an emotional response. Collected
data includes accelerometer data, heart rate, electrodermal
activity, skin temperature, and face videos. We also pro-
pose a baseline approach for fair comparisons when using
the proposed dataset. The approach uses a combination of
a pretrained backbone network with supervised contrastive
loss for face. Time-series features are also extracted, from
the physiological signals, which are used for classification.
This approach, on the proposed dataset, results in an av-
erage accuracy, precision, and recall of 76.59%, 88.90,
and 53.25, respectively, on electrical signals, and 90.39%,
98.77, and 75.71, respectively on face videos.

1. Introduction
Owing to advancement of technology, biometric systems

have become more applicable in preserving information on
high security applications such as healthcare, banking, and
e-commerce. Due to the inefficacy of current systems [49],
the need for an increased level of security from continuous
authentication (CA) systems is essential. Current solutions
for continuous authentication systems largely depend on the
user’s behavioral information, such as keystroke and mouse
dynamics [53, 2, 13], gaze patterns [18, 56], and face recog-
nition [17]. These solutions, however, have certain limita-
tions. More specifically, they require the users to engage
with the system by performing a predefined task in an unin-
terrupted manner [14]. For example, keystroke dynamics-
based CA requires the user to continue typing on the key-
board to provide appropriate data to the system. Gaze pat-
terns require certain amount of synergy between the user
and system to produce adequate results [14].

Due to the vulnerability of the prior systems, we propose
to use sensor-based signals such as accelerometer, photo-
plethysmogram (PPG), and electrodermal activity (EDA)

sensors that can potentially overcome the above men-
tioned issues. More specifically, we use 4 different sig-
nals, namely- Accelerometer (ACC), Heart Rate (HR), EDA,
and Temperature (TEMP). Firstly, the aforementioned bio-
signals do not prompt the user for a specific input since they
collect data in an unobtrusive manner. In addition to this,
they are appropriate for systems which do not impose any
restrictions on movement of the user. The PPG signals were
traditionally intended for healthcare practices because of the
signals’ innate property of being distinctive towards human
liveliness [1, 48, 15]. This makes them an unlikely target of
spoof attacks and forging since this would require falsifying
physiological signals involuntarily from the subject [39].

While PPG signals contain valuable information, and can
be difficult to spoof, they are subjective and often change
over time. Because of this, it is important to evaluate CA
systems across multiple time periods. The existing litera-
ture largely investigates the effect of physiological signals
for CA over a single session (i.e., continuous signal mea-
surement during the same time period) [28, 7, 36]. Practi-
cally, the enrollment and authentication phase of a CA sys-
tems occurs across different sessions. Furthermore, emo-
tions play a critical role in actuating a physiological re-
sponse from the user (and vice-versa) [48, 54, 19]. For ex-
ample, an increase in stress is often indicated by spikes in
heart rate and EDA signals [34]. Considering this, we col-
lected a new dataset from multiple sessions and emotion-
based contexts. The dataset contains various physiologi-
cal signals, as well as face video information. The partici-
pants watch several videos that are meant to elicit different
emotional responses such as Sadness, Content, Disgust, and
Happiness. This is done to vary the physiological activity
within the participants [35]. This occurs for a total of three
sessions with an interval ranging from a few days to weeks
between each session. As an added value, we augment our
physiological dataset with facial and body pose videos of
the participants reacting to these videos. Face information
is a valuable modality [13], and we show that it can be used
to assist the physiological signals. The contributions of this
work are 3-fold and can be summarized as follows:

1. A new dataset is presented that contains physiologi-



cal signals such as heart rate, EDA, skin temperature,
motion activity with accelerometer data (collectively
called electrical signals), and face videos from two dif-
ferent angles. The data is collected across multiple
sessions, and contexts within each session. Each con-
text comprises of participant watching a specific video
to elicit an emotional response. A total of 27 sub-
jects from diverse background and age-range (young,
adults, and older adults) participated in the study. The
dataset is available to the community and can be ob-
tained upon request.

2. A subject-wise baseline continuous authentication ap-
proach on both electrical signals and face images is
proposed. For face images, we propose a combina-
tion of a pretrained backbone network with a super-
vised contrastive loss [32]. For electrical signals, we
extract a collection of features on time-series data and
use glassbox models [44] for classification. We utilize
this model to observe which feature-sets contribute the
most across different experiments

3. The proposed solution across different sessions and
context and report different metrics on each, including
accuracy, precision, recall, FRR, and FAR.

2. Related Work
2.1. Continuous Authentication

Crouse et. al. [13] combined face-based features with
Inertial Measurement Unit (IMU) data to improve the face
recognition accuracy and demonstrate the effectiveness of
the new system for unobtrusive and continuous authentica-
tion. To do this, the authors utilize the smartphone devices’
accelerometer, gyroscope, and magnetometer (collectively
called IMU) data to correct camera sensor orientation and
face image. They combined face data with the IMU data for
continuous authentication. The frequency of CA happens
every tdelay seconds wherein a threshold score, tlogin, in-
crementally reduces every time there is a verification fail-
ure. Gopal et. al. [22] proposed a low interval, robust
CA system using only 3-axis accelerometer data. This in-
volved extracting 52 features from the raw accelerometer
data by dividing them into overlapping chunks and creating
features per chunk. This was followed by feature ranking
and selection using correlation-based algorithms [21]. The
authors then construct baseline and temporal models using
Random Forest [6] and Neural Networks.Martinho et. al.
[38] proposed a multi-biometric system using Electrocar-
diogram (ECG) and Blood Volume Pulse (BVP). The partic-
ipants performed guided writing, touch pad usage, and free-
form writing on a laptop. The ECG data was collected using
chest and forearm sensors and BVP data through wrist sen-
sors. Feature denoising and segmentation was performed

on both modalities and features were extracted from a fixed
window waveform. Decision level fusion between KNN
[3] and Naive-Bayes[52] were performed on both uni and
multi-modal data.

2.2. PPG Dataset for Continuous Authentication

The public dataset Biosec3 [27] includes PPG data us-
ing a fingertip device from 170 participants over multiple
sessions. In each session, the participant underwent a pe-
riod of relaxation for 3 minutes followed by an exercise for
a duration of 1.5 minutes. The PPG-ACC dataset [5] in-
cludes 7 subjects with an age range of [20, 52] including
four males and seven females. 15 PPG signals for each
subject along with their accelerometer reading were col-
lected. The data was collected only for a single session
wherein the participants performed two exercises - squats
and stepper followed by a resting period. Schmidt et. al.
[46] introduced an emotion based PPG dataset that utilized
chest and wrist worn sensors for data collection. More
specifically, ECG, EDA, Temperature and Electromyogra-
phy (EMG) data were recorded for 15 participants with 12
males and three females. During the session, the partici-
pants were subjected to four different conditions - Baseline,
wherein the participant sat for 20 minutes without perform-
ing any task, Amusement, where the subjects watched 11
funny video clips, Stress, where the subjects delivered a five
minute speech on their personal traits and finally, a guided
meditation session. Koelstra et. al. [33] presented a multi-
modal dataset called DEAP for the analysis of human affect
states. 32 participants watched a 1-minute long excerpts
of music videos. Each participant watched 40 such videos
and self-reported the affect states in terms of arousal and
valence. The dataset included EEG signals of all the partic-
ipants and video information of 22 of 32 participants.

The proposed dataset extends these works in multiple
ways. First, similar to the DEAP dataset [33], the proposed
dataset uses similar tasks to elicit emotions. Unlike DEAP,
we extend the proposed dataset to multiple sessions. Sec-
ond, the Biosec3 dataset [27] used multiple sessions, how-
ever, only one context was used. In the proposed dataset,
the subject data is collected across multiple emotion-based
stimuli (i.e., context). Third, the DEAP dataset provides
an arousal and valence value either positive (+1), negative
(−1) or neutral (0) value. This is extended as the proposed
dataset also includes the compound emotional state of the
participant. Finally, the proposed dataset contains a larger
age range, including children and elderly subjects, com-
pared to many current datasets. For example, the age range
of PPG-ACC is [20, 52], whereas the proposed dataset has
an age range of [8, 72].



Figure 1. Overview of the data collection pipeline. Per session, each participant watches four context videos. Camcorders and wearable
sensors collect the respective modalities such as videos and electrical signals (Section 3.2). Then signal preprocessing for each modality is
performed (Section 4.1). Finally both the modalities are trained independently using separate classifier (Section 4.2).

Table 1. Demographic information of dataset subjects.
Type Category Number of cases % of cases

Sex Male 17 63

Female 10 37

Race

Asian 11 41

White 9 33

Middle Eastern/North African 4 15

African American 2 7

Hispanic/Latino 1 4

Age
8− 18 4 15

19− 35 18 67

36− 72 5 18

3. Context-based CA Dataset

3.1. Data Collection

Figure 1 shows the entire pipeline of the data collection
process through classification. More specifically, each par-
ticipant performs a task (e.g., watch a video), which is the
user behavior module. Next, wearable sensors and a cam-
corder record the respective data across various modalities.
The raw signal then undergoes preprocessing, feature ex-
traction and data selection process under the signal process-
ing module. Finally, we use the extracted features within a
continuous authentication (CA) system by using all modal-
ities in the classification module. Altogether, 32 subjects
participated in the data collection process. In this study, the
exclusion criteria for our dataset include participants who
have not completed all three sessions. Five subjects did not
complete all three sessions and accordingly, we evaluate our
dataset and CA systems on 27 participants (Table 1).

A major goal of the study is to investigate continuous au-
thentication where subjects are eliciting different affective
states across multiple sessions. This is motivated by previ-
ous works that have shown expression can impact identify-
ing faces [29]. To facilitate this, we select four short clips
per session, each to bring forth a certain target emotion from
the participant, namely Sad, Content, Disgust, and Happy.
It is important to note that the intended/target affective state

and the self reported state can be different [55]. Prior to the
study, the participants completed an initial virtual meeting,
and read and signed a consent form. The participants then
filled out a demographic form which contained information
as summarized in Table 1. For children below 18 years of
age, the demographic information were filled by the accom-
panied guardian. The participant is then equipped with a
wearable sensor and given instructions on its use. Then, the
participant begins watching the context videos. The aver-
age length of each session is ≃ 30 minutes. The study was
approved by XXXX (removed for double-blind review).

Baseline Condition. Once the participant is ready, they
begin the session by performing a 30 second breathing ex-
ercise. This is a baseline setup for the participant with the
aim of inducing a neutral affective state [41] and nullify any
affect priming [42] originating out of external factors before
beginning the session.

Affect Elicitation. We focus on collecting spontaneous
facial expressions and reactions from the participants. For
recording this spontaneous affect behaviour each task was
regulated and guided by a research assistant in order for the
participant to familiarize themselves with the environment.
Moreover, movie clips and videos have shown effective-
ness in evoking an emotional response from the participants
[23, 11]. To this end, video clips eliciting a specific affect
is played for the participants to watch.

Table 2 describes the content of each video per session
played for both children and adults, making a total of 12
videos that a participant watches throughout the data col-
lection process across three sessions. We play the same set
of context videos for adults and older adults per session, but
maintain a separate set of videos more applicable to chil-
dren. The average length of the video clips is ≃ 60 sec-
onds. Altogether, the participant watches four videos during
the session, each eliciting a target emotion in the following
order - Sadness, Content, Disgust, and Happiness. As out-
lined in Figure 2, each video is succeeded by the breathing



Table 2. Stimulus videos played for the participant
Target Emotion Age-Group Session 1 Session 2 Session 3

Sad Adult 911 crash 911 call by a toddler 93 year man in court

Children Lion King Toy Story Ending Scene from COCO

Content Adult Puppies playing Man with his cat Rescued puppies

Children Puppies playing Kid with puppies Scene from Despicable Me

Disgust/Stressed Adult Eating Caterpillar Iguana chased by snakes Fear factor lying with worms

Children Eating Caterpillar Scene from Pirates Timon and Pumba eat worms

Happy Adult Prank video Man falling YouTube fails

Children Prank video scene from UP YouTube fails

Figure 2. Order of videos shown along with subject self-reporting
and breathing exercises (BE).

(a) (b)
Figure 3. User interface of our Android self-report app where the
user logs affect response after watching the stimulus video

exercise (Section 3.1) with a similar purpose of removing
affect priming originating from the preceding video.

Affect Self-Report. To extend the usability of the dataset,
we additionally provide the quantified affect response of the
participant after watching the video (Q1). Here, the user
is prompted to enter different information such as emotion
felt while watching the video, the overall effect of the video
on the user (positive, negative, or neutral), and the scale to
which the user felt the positive or negative effect, if any. To
do this, we built a simple Android application that presents
a three-part questionnaire (Q1, Q2, Q3) to the participant
once they finish watching a video. The layout of the app is
shown in Figure 3.

After each affect stimulus, the participants self-report
their emotions, which are listed as Neutral, Happy, Disgust,
Surprise, Fear, Angry, and Sad (Figure 3a). In addition to
this, we allow a custom text field where the user can en-
ter any emotion that is not covered in Q1. As established
in the literature [16], the participants can experience multi-
ple emotions under a single context video. Based on this,

(a) Top three emotions reported per task by the all participants

(b) Box plot of distribution of arousal levels reported.

(c) Discrete valance distribution for positive (+1), negative (-1), and
neutral (0) levels.

Figure 4. Distributions of all three reported affect labels. Each plot
considers all the participants across all three sessions.

we allow the participants to select multiple emotion cate-
gories. The layout of questionnaires Q2 and Q3 is shown in
Figure 3b. The focus of Q2 is to collect the discrete subjec-
tive experience of the participant after watching the video.
Therefore, we discretize the continuous valence levels into
Positive (+1), Negative (−1) and Neutral (0).

Figure 4a compares the highest reported emotions (top
three) and the target emotion for each context video for all
the subjects across all the sessions. It can be observed that
the two mostly align with each other. For example, after
viewing the video specifically designed to evoke sadness
(C1), participants self reported feeling Sad a collective of
42 times, across all three sessions, and similarly, partici-
pants self reported feeling Happy 65 times while watching
the content video (C2). This suggests that the context videos
effectively succeeded in eliciting the targeted emotion. Q3
focuses on extracting the arousal values for each report.
This measures the intensity with which the participant felt
the reported emotion. Figure 4b shows the box plot for the
continuous values reported for all subjects and sessions per
context. The Interquartile Range of the plots indicate a rela-



(a) Frontal face view. (b) Top angle face View.
Figure 5. Different views from the collected video.

tively high variance between the arousal values reported by
the participants, with the least variance shown for the Con-
tent context (C2). Additionally, the left-skewed boxes indi-
cate a higher frequency towards low-valued scores. Figure
4c shows the frequency of each discrete valence category
per context video for all the subjects and sessions. Once
again, this is in accordance to Figure 4a, where we show the
agreement between target emotion and self-reported emo-
tion. For example, the Disgust context (C3) shows 36 par-
ticipants felt worse than before after watching the video.
Similarly, for Happy (C4), 45 participants felt better than
before post context session.

3.2. Sensor and Camera Setup

The acquisition system consists of two cameras for cap-
turing face and body movement and an Empatica E4 1 wear-
able sensor to capture the electrical signals, namely ac-
celerometer data (ACC) (32 Hz), skin temperature (TEMP)
(4 Hz), heart rate (HR) (1 Hz), and electrodermal activity
(EDA) (4 Hz). The subjects wore the watch on their non-
dominant hand. For video capture, we used two DVC 4K
camcorders, for two different angles - face view and top
view, which records at 60fps. Figure 5 shows both the
camera views obtained to capture face and body movement.
We chose two angles, as it has shown that pan camera an-
gles can affect the overall result in affect related tasks [12].
For the electrical signals, we use the signals stored from
the watch directly. As part of the CA system design and
the dataset, we only use the segment of video and signals,
where the participant is watching one of the four context
videos. Another motivation for using physiological signals
along with face is it has been shown that there is a correla-
tion between intense expressions and corresponding phys-
iological signals [25]. Our data collection supports this as
shown in Figure 6.

4. Authentication System Design
The raw data captured must be first segmented into the

respective contexts. This means the electrical signals and

1http://www.empatica.com/research/e4/

Figure 6. Sample subject showing facial images and heart rate over
time. As can be seen here, the subject has a more intense expres-
sion when the HR is at it’s peak. Conversely, the expression is
lower intensity when the HR is lower (e.g., at 0 and 50 seconds).

the videos must contain only those fragments that corre-
sponds to one of the four context videos. To do this, we
automate the process using the audio of the session and the
audio of the four context videos for that session and apply
signal correlation using Fast Fourier Transform [30] which
demonstrates higher efficacy in acquiring the exact times-
tamps of the context video. Using this information, we seg-
ment both the video and electrical signals.

4.1. Feature Extraction and Selection

Electrical Signals. Feature extraction of the electrical
signals was done using a sliding window technique which
has been employed previously in literature [45, 22]. Primar-
ily, we start with ACC data which consists of tri-axial co-
ordinate information and calculate the magnitude per time
step, which is given by m =

√
x2 + y2 + z2, where x, y,

and z are the coordinates. Similar to the works of Gopal
et. al. [22], we discard the first and the last 100 samples
as part of the data cleaning process. Next, we generate
samples using a window size of 500 samples without any
overlapping criteria (i.e., [500, 0]). We follow the same pro-
cess for all the other signals with different window size and
overlapping criteria. For EDA, TEMP and HR, the values
are [100, 75], [100, 75], and [20, 15], respectively. This in-
dicates that the verification frequency on these signals can
have a time interval as low as ≃ 1.5 seconds (EDA).

Since our CA system provides authentication decisions
at the feature level, we extract several time and frequency
domain features from each of the electrical signals. We
use tsfresh [9], a tool which specializes in feature extraction
from time series data and provides an extensive list of fea-
tures from each column of the data2. This results in a feature
set of ≃ 900 dimensions per signal. Subsequently, feature
selection is performed using tsfresh which applies a signif-
icance test on uni-variate features and evaluates the corre-
sponding p values using a Benjamini Hochberg test [10].

2https://tsfresh.readthedocs.io/en/latest/text/list of features.html



(a) Electrical Signals (b) Images
Figure 7. Training/enrollment pipeline for the two modalities. (a)
Discrete valance distribution for positive (+1), negative (-1), and
neutral (0) levels. (b) Face detection and cropping occurs in real-
time from MediaPipe [37]. Then training occurs via combination
of deep networks and Supervised Contrastive Loss (SCL).

Images. We first randomly select frames from each video
to remove redundant information from consecutive frames.
Face cropping is then performed for each video and the
background is masked out to remove any artifacts. We em-
ploy an open source tool called MediaPipe [37], which is a
light-weight face detection and cropping tool. This enables
us to provide authentication decisions at frame level.

4.2. Classification

Typically, a CA system is composed of regular one-shot
authentication, which determines the legitimacy of the cur-
rent user at every shot. This is inline with a one-vs-all clas-
sification problem where the model treats the genuine user
as one class, and all the other imposter users under the all
class. To this end, we create a one-vs-all classifier (binary
classifiers) for each subject using both electrical signals and
images independently. The following subsection details the
respective algorithms.

Electrical Signals. Given the training samples for each
electrical signal, which are of varying dimensions, we ob-
serve a high class imbalance in the dataset. To facilitate
enhanced training, we choose to balance the classes using
the Synthetic Minority Oversampling Technique (SMOTE)
[20], where synthetic samples for the minority class can be
generated. It works according to the principle of nearest
neighbor where it interpolates new data between the target
feature and the neighboring feature of the same class. More
precisely, we only apply SMOTE to the training samples.

We use the augmented training samples with a glass-
box classifier called Explainable Boosting Machines (EBM)
[43]. EBMs fall under the realm of explainable models that
provide the optimal trade-off between the expressiveness of
black-box models and high interpretability of linear mod-

els. Figure 7a details the overview the proposed training
approach on electrical signals.

Images. Figure 7b shows the training pipeline for image
based continuous authentication. To extend the explainabil-
ity to images, we employ a representation learning method
[4] to our algorithm. Instead of directly using a discrim-
inative deep learning classifier, we first input the cropped
images, x ∈ RD to a CNN backbone network, in this case,
an Inception Net V1 [47] network pretrained on VGG Face
dataset [8] which maps the input image x to a representation
vector r = Backbone(x) ∈ RDe . Next, we feed the latent
features r to a single layer MLP network called the projec-
tion network, which maps r to vector z = Proj(r) ∈ RDz .
The Dz dimensional feature vector is optimized using a
Supervised Contrastive Loss [32] which aims at maximiz-
ing the distance between the features of different classes
and minimize the distance between the features of similar
classes. Mathematically, the loss function is given by

Lcon =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈N exp(zi · za/τ)
(1)

Where P is the set of all positive data points with the
same class as i, except i, and N is the set of all data points
(positives and negatives) except i. As we show in Section 5,
this aids in minimizing the class imbalance problems for im-
ages and simultaneously, provide embeddings which show
evidence of class separability in latent space. During test
time, we freeze the backbone network to get the latent space
and run it through a single MLP classifier to provide the au-
thentication decision.

5. CA Performance Assessment
To evaluate the performance of both modalities (elec-

trical signals and images), and assess the effectiveness of
the proposed system, we perform two preliminary exper-
iments based on train and validation data split. As men-
tioned in Section 4.2, the experiments are performed on the
two modalities independently. For each of the experiments,
to be consistent with literature [50, 22, 13], we report the
following metrics - Accuracy, Precision, Recall, False Ac-
ceptance Rate (FAR), and False Reject Rate (FRR).

5.1. Train and Test Split

For the first experiment, we split our dataset in a session-
wise manner. Since we construct a subject-specific model
(i.e., model for each subject), if S is the list of all sub-
jects in the dataset, all the data of a target subject s ∈ S
from {session 1, session 2} are enrolled as samples of
one class in the training set and {session 3} as the vali-
dation set. Similarly, to get a diverse representation of all
class, we use {session 1, session 2} data from the rest of



Table 3. Average accuracy, precision and recall scores list for each
modality for session and context-based splits

Modality Split Accuracy (SD) ↑ Precision ↑ Recall ↑

Physiology Session 74.19 (15.08) 77.39 48.56

Context 76.59 (13.44) 88.90 53.25

Image Session 86.86 (16.66) 80.19 61.67

Context 90.39 (10.87) 98.77 75.71

(a) Accuracy (in %)

(b) False Acceptance Rate (FAR)

(c) False Reject Rate (FRR)
Figure 8. Subject-wise accuracy, FAR, and FRR scores for electri-
cal signals for both type of splits.

the subjects, s ∈ S \ s as training set and {session 3} as
the validation set. Session-wise split analyzes the model’s
effectiveness in a longitudinal manner, especially in elec-
trical signals, since the CA systems must show robustness
against the long-term persistence of these signals. We use
session 3 as the validation set since by session 3, we hypoth-
esize that the participant is most comfortable compared to
session 1 and session 2. This reflects the real-world setting
where the user is more likely to require CA on devices they
are most accustomed to.

For the second experiment, we perform a context-based
split on the dataset. This implies that, for a given subject, all
the data belonging to 3 of the 4 contexts (Sad, Content, Dis-
gust, Happy) from the three sessions are used as the training

Table 4. Top-5 features for electrical signals (session-based split).
Feature Parameters Importance Score

agg linear trend ’attr’: ’intercept’, ’chunk len’: 50, ’f agg’: ’max’ 0.49

’attr’: ’intercept’, ’chunk len’: 50, ’f agg’: ’mean’ 0.47

change quantiles ’f agg’: ’var’, ’isabs’: True, ’qh’: 0.6, ’ql’: 0.2 0.47

cwt coefficients
’coeff’: 11, ’w’: 10, ’widths’: (2, 5, 10, 20) 0.46

’coeff’: 12, ’w’: 10, ’widths’: (2, 5, 10, 20) 0.44

’coeff’: 3, ’w’: 20, ’widths’: (2, 5, 10, 20) 0.43

fft aggregated ’aggtype’: ’skew’ 0.39

number crossing m ’m’: 1 0.36

Table 5. Top-3 features for electrical signals (context-based split).
Feature Parameters Importance Score

agg linear trend ’attr’: ’intercept’, ’chunk len’: 5, ’f agg’: ’mean’ 0.74

fft coefficient
’attr’: ’angle’, ’coeff’: 56 0.33

’attr’: ’angle’, ’coeff’: 65 0.30

’attr’: ’real’, ’coeff’: 24 0.29

ratio beyond r sigma ’r’: 5 0.28

set and the fourth context is used as the validation set. In this
work, we utilize {Sad,Content,Happy} as the training
set and {Disgust} as the validation set. Similar to session-
based split, the genuine users (s) are enrolled as part of one
class, and all the other subjects (s) are enrolled as part of
all class. We designate Disgust as the validation context
since it showed highest variance in terms of self-reported
affect intensity (Figure 4b), and also displayed a good ratio
of positive, negative and neutral affect compared to other
contexts (Figure 4c).

5.2. Electrical Signals

It is important to note that for electrical signals, we per-
form a search for the best modality for subject-wise mod-
els. Therefore, for each subject, we save the modality with
the best overall performance and assign the modality as
the primary feature set for the subsequent experiment (i.e.,
context-based split). This is to ensure the features are con-
sistent thereby providing reliable results.

Table 3 (top row) reports the average accuracy (with
standard deviation), precision, and recall scores for both
session and context-based split. Context-based split per-
forms better than session-wise split, especially in terms of
precision. This can be explained, in part, by the same ses-
sion data being available in both training and validation.
This result implies that the model has a low false positive
rate thereby limiting incorrect access to imposter users. The
same can be observed in Figure 8 which plots the subject-
wise accuracy, FAR, and FRR. Intuitively, the high num-
ber of false positives can be observed in Figures 8a and 8b
which tends to show higher frequency of troughs and peaks,
respectively, for session-based split vs. context-based split.

Due to the large amount of features, we use the trans-
parency of the EBMs to provide the most important features
used for authentication. EBMs are a family of additive mod-
els [24] and therefore, supports a global explanation metric
called mean absolute score, which is an average absolute



(a) Accuracy (in %)

(b) False Acceptance Rate (FAR)

(c) False Reject Rate (FRR)
Figure 9. Subject-wise accuracy, FAR, and FRR scores for images
for both type of splits

contribution a feature makes on each sample in the train-
ing set. Tables 4 and 5 report the top-5 and top-3 features
for session and context-based split, respectively. We also
present the specific parameter combination and the corre-
sponding scores for each. In can be observed that in both
cases, aggregate linear trend [51] accounts for the most con-
tribution. Additionally, we see the frequency features (con-
tinuous wavelet transform and fast Fourier coefficients) add
value to the model. A deeper analysis into the feature sets
is out of the scope of this paper and is left for future work.

5.3. Images

Table 3 (bottom row) reports the average accuracy, pre-
cision, and recall for both the experiments. Additionally,
Figure 9 shows the subject-wise results for accuracy, FAR,
and FRR. Similar to electrical signals, the metrics suggest
an improved performance on context-based split compared
to session-based split. Moreover, the performance of image-
based CA is superior to that of electrical signals across all
splits. This can be explained, in part, by images allowing
extraction of semantic information from the data compared
to electrical signals, which consists of higher volume of ar-
tifacts. There is, however, a trade-off between performance

(a) Session-based split (b) Context-based split
Figure 10. Sample UMAP embeddings of deep features, r ∈ RDe .

and latency of authentication decisions between the two.
The proposed method on electrical signals allows for feature
extraction every ≃ 1.5 seconds, which is relatively efficient
compared to the computationally heavy face detection and
cropping, followed by a deep learning inference on images.

In order to showcase the ability of the deep learn-
ing model to distinuish between classes, we visualize the
UMAP embeddings [40] of the latent output, r ∈ RDe .
Figures 10a and 10b shows the visualization of a sample
subject’s validation set for both the splits. We can observe
a distinct segregation between the feature points of genuine
and imposter users for both splits.

6. Conclusion
We proposed a new multimodal, continuous authentica-

tion dataset centered around emotions as context and across
multiple sessions. We collected videos of 27 participants
under four different affect contexts (Sad, Content, Disgust,
and Happy) per session and the corresponding electrical
signals (accelerometer, electrodermal activity, temperature,
and heart rate). We also collected self-report information
of the participant in the form of compound emotional la-
bels, discretized valence levels, and continuous arousal val-
ues. We performed continuous authentication experiments
on both modalities based on session, and context-based data
splits. We also highlighted the feature contribution using
the mean absolute scores offered by EBMs. While these re-
sults are encouraging, there are some limitations. First, only
one context (disgust) was used for validation in the context-
based data split. We will validate other contexts in future
work. We also validated the modalities separately. a fusion-
based approach may boost performance, as it has been ef-
fective in past works [26, 31]. We will also collect a larger
more uniform dataset across age, gender, and ethnicity.
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