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Abstract 
 

3D facial representations have been widely used for face 

recognition. There has been intensive research on 

geometric matching and similarity measurement on 3D 

range data and 3D geometric meshes of individual faces. 

However, little investigation has been done on geometric 

measurement for 3D sketch models. In this paper, we study 

the 3D face recognition from 3D face sketches which are 

derived from hand-drawn sketches and machine generated 

sketches. First, we have developed a 3D sketch modeling 

approach to create 3D facial sketch models from 2D facial 

sketch images. Second, we compared the 3D sketches to the 

existing 3D scans. Third, the 3D face similarity is measured 

between 3D sketches versus 3D scans, and 3D sketches 

versus 3D sketches based on the spatial Hidden Markov 

Model (HMM) classification. Experiments are conducted 

on both the BU-4DFE database and YSU face sketch 

database, resulting in a recognition rate at around 92% on 

average. 

 

1. Introduction 

Face sketches can be drawn either by a trained police 

artist or using a composite software kit [1, 2]. Both types of 

sketches have been studied in the context of searching or 

matching a sketch to a subject’s face in a database of photos 

or mug-shots [3,4,5,6,7,8]. Since all existing works were 

based on 2D sketches, issues of pose variations are still 

challenging. Recently, 3D face recognition has attracted 

much attention [9,10,13,14]. Along the same vein, 3D 

sketch models reconstructed from 2D sketches may improve 

sketch recognition performance. In order to increase the 

accuracy of geometric surface matching and efficiency of 

similarity measurement between 3D faces and probe sketch 

data, it is highly demanded to have 3D sketches matched up 

with the 3D scan models.  Nevertheless, there is little 

investigation reported on 3D sketch modeling and 3D 

sketch recognition in the past.    

 In this paper, we address the issue of 3D sketch model 

construction from 2D sketches, and compare the 3D sketch 

models with the corresponding 3D facial scans. We further 

validate the models by conducting 3D face sketch 

identification on two 3D face databases. Note that there is 

no existing graphic tool for 3D sketch model construction 

from witness’ description directly.  One solution is to create 

3D sketch models based on 2D sketches from 

hand-drawings by artists or conversion from 2D images [11, 

12]. 

To build 3D sketch models, we applied a scale-space 

topographic feature representation approach to model the 

facial sketch appearance explicitly. We initially tracked 92 

key facial landmarks using an active appearance model 

(AAM) [15], and then interpolated to 459. From the 

interpolated landmarks, we used a 3D geometric reference 

model to create individual faces. Based on the topographic 

features obtained from the sketch images, we applied a 

mesh adaptation method to instantiate the model.  

In order to assess the quality of created 3D sketch 

models, we conducted a comparison study between the 

created 3D sketch models and their corresponding 

ground-true 3D scans. We show the difference between two 

data sets as well as the difference between the 3D sketch 

models created from hand-drawn sketches and the 3D 

sketch models created from machine-derived sketches.  

Moreover, in order to validate the utility of the 3D sketch 

models, we propose a new approach to decompose the 3D 

model into 6 independent component regions, and apply a 

spatial HMM model for sketch model recognition.  The 3D 

sketch face recognition experiment is conducted on two 

databases: BU-4DFE [19] and YSU sketch database [20]. 

2. Source Data  

     Face database BU-4DFE [19] and YSU sketch database 

[20] have been used as our data source. Sample 3D scans of 

BU-4DFE are shown in Figure 1. The corresponding 2D 

textures are shown in Figure 2 (first row).  

     Based on six subjects of 4DFE, two forensic artists from 

Youngstown State University drew the corresponding 2D 

sketches of the same subjects.  Thus we obtained 

Hand-Drawn (HD) sketch images of six subjects. Figure 2 

(row-2) shows several samples of HD 2D-sketches.  

     Due to the time-consuming and intensive work of artist 

drawing, we created 2D sketches from 2D texture images of 

the 4DFE database. Our method can simulate the pencil 

sketch effect.  The texture to sketch conversion follows a 
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three-step image processing procedure: First, the image is 

processed by a de-saturation process, then the image is 

inverted. After applying a color dodge, the image is blurred 

with a Gaussian filter. Finally, the radius of pixels is 

adjusted to get an ideal sketch effect. Figure 2 (row-3) 

shows examples of MD 2D-sketch images.  

We have also used YSU hand-drawn 2D facial sketches 

with 250 sketches.  Figure 3 (row-1) shows examples of 

YSU HD 2D-sketches. 
 

 
Figure 1: Examples of 3D scans from 4DFE: textured models 

shown in upper row and shaded models in bottom row. 

 

 

 
Figure 2: Examples of 2D images of 4DFE from top to bottom: 

Original textures (row-1); Hand-drawn (HD) 2D sketches 

(row-2), and Machine-derived (MD) 2D sketches (row-3).  Rows 

4-5: Created 3D sketches from HD sketches with textures and 

mesh models in different views.   Row 6-7: Created 3D sketches 

from MD sketches with textures and mesh models in different 

views.   

 
Figure 3: Samples of YSU 2D sketch database (Row 1) and the 

reconstructed 3D sketches (Row 2-3). Row-4 shows synthesized 

3D sketches with rotated heads on the corresponding shoulders.  

3. 3D Sketches Creation from 2D Sketches 

3.1. 3D sketch reconstruction  

   To build 3D sketch models, we developed a scale-space 

topographic feature representation approach to model the 

facial sketch appearance explicitly. Using an AAM we 

initially tracked 92 key facial landmarks, and then 

interpolated them to 459 using a Catmull-Rom spline [16] 

(as shown in Figure 4 (a)). 

      
   (a)                     (b) 

Figure 4: (a) Illustration of 459 points on a sample face; (b) 83 

feature points for evaluation. 

     From the interpolated landmarks, we used a 3D 

geometric reference model to create individual faces. The 

reference model consists of 3,000 vertices. Based on the 

topographic labels [17] and curvatures obtained from the 

sketch images, we then applied a spring-mass motion 

equation [18] to converge the reference model to the sketch 

topographic surfaces in both horizontal and depth 

directions. Existing topographic labeling approaches can 

create different levels of feature detail, depending on the 

variance of the Gaussian smoothing function () and the 

fitting polynomial patch size (N) (both  and N are called 

scales). The existing applications of topographic analysis 
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are limited in a “still” topographic map with a selected scale.   

Every label may represent various features in a specific 

image, various features (e.g., on the organs in the human 

face) may be “screened out” with various “optimal” scales. 

The idea of scale is critical for a symbolic description of the 

significant changes in images. A small scale could produce 

too much noise or fake features. A large scale may cause the 

loss of important features. Too many fake features could 

cause the model adaptation be distracted. More seriously, it 

could cause the adaptation to be unstable, (e.g., even not 

converge). Too few features will not attract the generic 

model into the local facial region with expected accuracy. 

Due to the difficulty to select an “optimal” scale, here we 

use a multi-scale analysis approach to represent the 

topographic features from a coarse level to a fine level as the 

scale varies. Applying the topographic labeling algorithm 

with different scales, we generated the topographic label 

maps of facial images at different levels of detail.  Different 

scales will be applied to different levels of details of sketch 

images (e.g., hand-drawn (fine details) or machine derived 

(coarse details).  

     In order to deform the face model into the non-rigid 

facial area, we applied the adaptive mesh [18] to the facial 

areas in the multi-scale topographic domain. Such dynamic 

meshes are moved by not only the 2-D external force (e.g. 

topographic gradient) but also the depth force (e.g. 

topographic curvature) for model deformation in multiple 

scales. We take the model as a dynamic structure, in which 

the elastic meshes are constructed from nodes connected by 

springs. The 3D external force is decomposed into two 

components: the gradients of the topographic surface are 

applied to the image plane, and the curvatures of the 

topographic surface are applied as a force to pull or deflect 

meshes in the direction perpendicular to the image plane. As 

a result, the 3D shape of mesh becomes consistent with the 

face surface. This procedure was performed based on a 

series of numerical iterations until the node velocity and 

acceleration were close to zero. Such a mesh adaptation 

method was applied to sketch regions to instantiate the 

model. Figure 2 and Figure 3 shows examples of 3D sketch 

models reconstructed from 2D sketches for both HD and 

MD data.  

3.2. 3D sketch accuracy evaluation 

(1) Comparison: 3D HD sketches versus 3D scans 

     We also conducted an objective evaluation, by which we 

calculated the error between the feature points on the 

individualized sketch models and the corresponding 

manually picked points on the face scans. We selected 83 

key points as the ground truth for assessment (see Figure 4 

(b)). After creating sketch models from 4DFE, we conduct a 

quantitative measurement as follows: First, we normalize all 

the models into a range of [-50, 50] in three coordinates of x, 

y, and z. We then calculate the mean square error (MSE) 

between the feature points of the 3D sketch and the ground 

truth of a set of models. We define the one-point spacing as 

a closest pair of points on the 3D scans, which is 

approximately 0.5mm on the geometric surface of the 4DFE 

models. The mean error of two models can be computed by 

the average of point differences between two models. 

Figure 5 shows the error statistics, which is the average 

error and standard deviation on each of the 83 key points. 

The result shows that the MSE of the examined points is 

8.71 point spacings. The average error ranges from 1 to 16 

point spacings, with the most of points being less than 10 

point spacings. The errors mainly lie in the left side and 

right side of the face contour and chin area, which are points 

69-83.   

 
Figure 5: Error statistics of selected 83 testing vertices of a set of 

models (3D HD-sketch models and 3D scans). Mid-point of each 

line represents an average error of the vertex (MSE). The standard 

deviation is shown by the length of the line.   

(2) Comparison: 3D MD sketches versus 3D scans 

     Similar to the above assessment, we also compare the 

difference between the 3D scans and 3D sketch models 

created from the MD sketches. Figure 6 shows the error 

statistics of the 83 points of 100 models. The MSE of the 

examined points is 6.84 point spacings. The MD sketch 

models show more accuracy than the HD sketches. The 

reason is that the MD sketches are derived from the 2D 

textures of 4DFE, thus, a better alignment can be obtained 

between the 3D sketches and 3D scans.  

 
Figure 6: Error statistics of selected 83 testing vertices of a set of 

models   (3D MD-sketch models and 3D scans).   
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(3) Comparison: 3D HD versus MD  

      In order to examine the similarity of the HD sketches 

and MD sketches. We compare the 3D sketch models 

created from hand drawn sketch image to the 3D sketch 

models created from machine generated sketch images.  The 

MSE of the 83 points among those models is 3.78 

point-spacings, which are very similar to each other.  Figure 

7 shows the error statistics. The results justify the 

approximate equivalence of both MD models and HD 

models, which can be used by subsequence study for face 

recognition. 

 
Figure 7: Error statistics of selected 83 testing vertices of a set of 

models (3D MD-sketch models and 3D HD-sketch models).   

4. 3D Sketch Face Recognition  

In order to validate the utility of the created 3D sketch 

models, we conducted experiments of 3D sketch model 

identification. To do so, we segment each sketch model and 

each scan model into six component regions. A 

conventional set of surface label features are used for the 

spatial HMM classification.  

4.1. Component region segmentation  

Given a 3D sketch model and the tracked feature points, 

we can easily segment the facial model into several 

component regions, such as the eyes, nose and mouth.  

However, without any assumption of feature points detected 

on the 3D scans, it is needed to automatically segment facial 

regions by a more general approach. We developed a simple 

yet effective approach for 3D facial component 

segmentation. This approach is general enough to be 

applicable to other kinds of mesh models, including 3D 

sketch models.  The component segmentation works on the 

geometric surface directly. It includes mainly two steps:  

(1) Edge Vertices (EV) determination: Since the 

edge-feature-rich regions of a 3D facial model lie in regions 

of eyes, mouth, and nose, we detect edge vertices based on 

their vertex normals. To do so,   a normal mapping scheme 

is used, where each vertex is assigned by a pseudo-color pc= 

(r, g, b).  pc is assigned by the corresponding vertex normal 

n, i.e., pc = n= (nx, ny, nz). Emulating the color to grayscale 

conversion, each vertex is assigned by an attribute value va: 

||114.0||587.0||299.0 zyxa nnnv       (1) 

Initially, an edge vertex can be calculated by iterating 

through the neighbors of each vertex and calculating the 

difference (da) between va of the vertex and the average va of 

its neighbors. Thresholding on da values could indicate the 

edge vertices, however, it may not generate a reliable result. 

Rather than using a threshold, we apply a clustering method 

to get two groups of vertices: edge and non-edge vertices. 

To do so, a k-means clustering algorithm is applied, where 

k=2, to determine the two groups according to the da values. 

Whichever cluster a vertex is closer to (edge or non-edge), 

that vertex will be added to the corresponding cluster. This 

procedure is iterated until the centroids of the clusters 

remain unchanged.  

Once we have obtained these edge vertices, a rectangular 

bounding box of the face model can be determined by a 

convex-hull of the edge vertices. We can also find the vertex 

with the highest z value of those edges, which is the vertex 

closest to the nose tip. Note that the top one-fourth of the 

face model is ignored to avoid noise from hair.  

(2) Component regions determination: Within the 

bounding box of a facial model, we start to use four edge 

vertices as the initial centroids to cluster the edge vertices 

into four component regions, which are left eye, right eye, 

nose, and mouth. The initial centroids are determined 

simply by four edge vertices within the bounding box, 

which are top-left, top-right, mid-bottom, and vertex close 

to nose tip, respectively. The k-means clustering method 

(k=4) is applied using Euclidean distances of edge vertices 

to the four centroids. The centroids of four regions are 

updated iteratively until they remain unchanged. As a result, 

four component regions are detected. Furthermore, the nose 

bridge region can be determined by the eye and nose 

boundaries, and the top of the convex hull.  The 

complementary region of the five component regions within 

the face convex-hull forms the sixth component region. 

Figure 8(a) shows an example of the resulting segmentation. 

 

4.2. 3D component feature representation  

3D facial models of both scans and sketches can be 

characterized by their surface primitive features. This 

               (a)                              (b)                             (c)                

Figure 8: (a) Sample of component regions; (b) Sample of labeled 

surface of a sketch model, and (c) a component-based HMM based 

on six component regions. 
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spatial feature can be classified by eight types: convex peak, 

convex cylinder, convex saddle, minimal surface, concave 

saddle, concave cylinder, concave pit, and planar. Such a 

local shape descriptor provides a robust facial surface 

representation [17,22]. To label the model surface, we 

select the vertices of the component regions, and then 

classify them into one of the primitive labels. The 

classification of surface vertices is based on the surface 

curvature computation [22]. After calculating the curvature 

values of each vertex, we use the categorization method [21] 

to label each vertex on the range model. As a result, each 

range model is represented by a group of labels, which 

construct a feature vector: G = (g1, g2, ..., gn), where gi 

represents one of the primitive shape labels, n equals the 

number of vertices in the component region. An example of 

the labeled surface is shown in Figure 8 (b). 

     Due to the high dimensionality of the feature vector G, 

where each of six component-regions contains vertices 

ranging from 300 to 700, we use a Linear Discriminative 

Analysis (LDA) based method to reduce the feature space of 

each region. The LDA transformation is to map the feature 

space into an optimal space that is easy to differentiate 

different subjects. Then, it will transform the n-dimensional 

feature G to the d-dimensional optimized feature OG (d<n).  

4.3. Spatial HMM model classification  

     In each frame, the 3D facial model is subdivided into six 

components (sub-regions) C1, C2, C3, C4, C5, and C6, as 

shown in Figure 8 (c), including regions of the eyes, nose, 

nose bridge, mouth, and the remaining face.   From C1 to C6, 

we construct a 1-dimensional HMM which consists of the 

six states (N = 6), corresponding to six regions. 

     As aforementioned, we transform the labeled surface to 

the optimized feature space using LDA transformation. 

Given such an observation of each sub-region, we can train 

the HMM for each subject. Given a query sketch face model 

sequence of a length k, we compute the likelihood score for 

each frame, and use the Bayesian decision rule to decide 

which subject each frame is classified to. Since we obtain 

the k results for k frames, we take a majority voting strategy 

to make a final decision. As such, the query model sequence 

is recognized as subject Y if Y is the majority result among k 

frames. This method tracks spatial dynamics of 3D facial 

sketches, the spatial components of a face gives rise to the 

spatial HMM to infer the likelihood of each query model. 

Note that if k is equal to 1, the query sketch model sequence 

becomes a single sketch model for classification.   

5. Experiments of Face Recognition    

5.1. 4DFE: 3D sketch (training) vs. 3D sketch (testing) 
 

The 3D sketch models include 3D models created from 

both HD sketch images and MD sketch images.  For each 

subject, we randomly select 50% of the model frames for 

training, the remaining 50% of the data for test. For subjects 

with HD models, we also include half of the data in the 

training set, and the rest are included in the test set.  

    For each training sequence of 4DFE, 20 sets of three 

consecutive frames were randomly chosen for training.  

Following the HMM training procedure (k=3), we 

generated an HMM for each subject. The recognition 

procedure is then applied to classify the identity of each 

input sketch sequence (k=3) as the previous section 

described. Based on the 10-fold cross validation approach, 

the correct recognition rate is about 95.5%. The ROC curve 

is shown in Figure 9. 

 

5.2. 4DFE: 3D scans (training) vs. 3D sketches (testing) 
 

In order to validate the utility of the 3D sketches with 

respect to the 3D scans, we conducted the 3D sketch 

classification against the corresponding 3D scans.  Similar 

to the above approach, for each subject, we randomly select 

20 sets of three consecutive 3D scans for training.  

Following the HMM training procedure, we generated an 

HMM for each subject. The recognition procedure is then 

applied to classify the identity of each input 3D sketch 

sequence (k=3). Based on the 10-fold cross validation 

approach, the correct recognition rate is about 89.4%. The 

ROC curve is shown in Figure 9. 

 

5.3. YSU: 3D sketch (training) vs. 3D sketch (testing) 
 

The validation has also been conducted on the 3D sketch 

models created from YSU sketch database, where sketches 

from 50 subjects are created. Each subject has five sketches 

drawn by five artists separately. There are 250 sketches in 

total. For each subject, we randomly select 4 sketches for 

training, the remaining one for test. Following the HMM 

training procedure (k=1), we generated an HMM for each 

subject. The recognition procedure is then applied to 

classify the identity of each input sketch model (k=1). 

Based on the 10-fold cross validation approach, the correct 

recognition rate is about 92.6% (see ROC curve of Fig. 9). 

 
Figure 9: ROC curves of 3D sketch face recognition. 
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     Due to the sketches drawn from different artists in the 

YSU database, the variation of the sketch styles and the 

single model query plus single model training of HMM 

degrades the recognition performance as compared to the 

4DFE case (sketches-to-sketches). However, the cross 

modality matching between 3D scans (training) and 3D 

sketches (testing) shows the challenge for classification as 

the 3D sketches created from 2D images may not match well 

to the ground true data (3D scans). A further study using a 

more advanced classifier will be investigated in future work. 

6. Conclusion and Future Work  

This paper addresses the issues of 3D sketch modeling 

and its validation through 3D sketch recognition using a 

component based spatial HMM.   The quality of 3D sketch 

models is evaluated by comparing to the corresponding 

ground-truth 3D scans. We have also shown the 

approximate equivalence of models between the 3D 

sketches from HD and MD. Among the test data (both 

4DFE database and YSU database), on average a 92% 

correct recognition rate has been achieved for 3D sketch 

model identification.    

   Our future work consists of developing more robust 

algorithms to detect features in 3D space and improving the 

current approach for handling noisy models with more 

expression variations. More advanced 3D geometric surface 

measurement, representation, matching, and classification 

will also be investigated [23, 24]. We will also validate our 

approaches by testing on the larger volume of datasets (e.g., 

FRGC 2.0 dataset, etc.), and evaluate the performance by 

comparing it to the 2D sketch recognition approaches [5-8]. 

In addition, we will further investigate the issues of sketch 

variations and pose variations from difference sources or 

different artists, and seek to integrate 3D sketches and 2D 

sketches in order to improve the face recognition 

performance. 
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