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Facial expression is central to human experience. Its efficiency and valid measurement are challenges that auto-
mated facial image analysis seeks to address. Most publically available databases are limited to 2D static images
or video of posed facial behavior. Because posed and un-posed (aka “spontaneous”) facial expressions differ along
several dimensions including complexity and timing,well-annotated video of un-posed facial behavior is needed.
Moreover, because the face is a three-dimensional deformable object, 2D videomay be insufficient, and therefore
3D video archives are required. We present a newly developed 3D video database of spontaneous facial expres-
sions in a diverse group of young adults. Well-validated emotion inductions were used to elicit expressions of
emotion and paralinguistic communication. Frame-level ground-truth for facial actions was obtained using the
Facial Action Coding System. Facial features were tracked in both 2D and 3D domains. To the best of our knowl-
edge, this new database is the first of its kind for the public. The work promotes the exploration of 3D spatiotem-
poral features in subtle facial expression, better understanding of the relation between pose and motion
dynamics in facial action units, and deeper understanding of naturally occurring facial action.
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1. Introduction

Research on computer-based facial expression and affect analysis has
intensified since the first FG conference in 1995. The resulting advances
havemade the emergingfield of affective computing possible. The contin-
ued development of emotion-capable systems greatly depends on access
to well-annotated, representative affective corpora [13]. A number of 2D
facial expression databases have become available (e.g., [1,2,7,8,16]), as
well as some with 3D imaging data (e.g., [9,14,15,24,25,45]). Although
some systems have been successful, performance degrades when han-
dling expressionswith low intensity appearance, large head rotation, sub-
tle skin movement, and/or lighting changes with varying postures.

Due to the limitations of describing facial surface deformation when
3D features are evaluated in 2D space, 2D images with a handful of
features may not accurately reflect the authentic facial expressions
(e.g., in-depth motion of 3D head pose, 3D wrinkles and skin extrusion
in the areas of the cheek, forehead, glabella, nasolabial, and crow's feet).

Another problematic issue is that facial action units (AUs) can occur
in more than 7000 different complex combinations [17], causing bulges
and various in- and out-of-image-planemovements of permanent facial
features, negative emotions from view of the left hemiface, and mouth
extrusions that are difficult to detect in a 2D plane. Three-dimensional
dynamic surface analysis and tracking will be important for those facial
expressions for which 2D motion information is not sufficient.

Because the face is a 3D object and many communicative signals
involve changes in depth and head rotation, inclusion of 3D information
is an important addition. Another major limitation of existing databases
is that most have only posed or acted facial behavior, and thus the data
are not representative of spontaneous affective expression, which may
differ in timing, complexity, and intensity from posed expression [22].
No currently available dataset contains dense, dynamic, 3D facial
representations of spontaneous facial expression with anatomically-
based (FACS) annotation [36].

Currently, most approaches to automatic facial expression analysis at-
tempt to recognize a set of prototypic emotional expressions (e.g., anger,
disgust, fear, happiness, sadness, and surprise) [3,5,13]. Many studies
about emotion used “acting” or “emotion portrayals” in a restricted
sense by recording subjects who are instructed to express single-label
emotions, sometimes using scripts [6]. However, the resulting posed
and exaggerated facial actions may occur only rarely in daily life [4].

Because posed and un-posed (aka “spontaneous”) facial expressions
differ along several dimensions [32], including complexity (especially
with respect to segmentation), well-annotated video of un-posed facial
behavior is needed. Moreover, as noted above, because the face is a
three-dimensional deformable object, a 3D video archive would be
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Fig. 1.Upper-left: general view from a regular camera; Upper-right: 2D video; Lower-left:
3D dynamic geometric model; Lower-right: 3D dynamic geometric model with mapped
texture.

Table 1
Eight tasks for emotional expression elicitation.

Task Activity Target emotion

1 Interview: talk to the experimenter and listen to a
joke (interview).

Happiness or
amusement

2 Video clip: watch a video clip and discuss it with the
experimenter.

Sadness

3 Startle probe: sudden, unexpected burst of sound. Surprise or startle
4 Improvisation: play a game in which the subjects

improvise a silly song.
Embarrassment

5 Threat: anticipate and experience physical threat. Fear or nervous
6 Cold pressor: submerge a hand in ice water for as

long as possible.
Physical pain

7 Insult: experience harsh insults from the experimenter. Anger or upset
8 Smell: experience an unpleasant smell. Disgust
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especially important. Two-dimensional databases, such as RU-FACS [23]
or Cohn–Kanade [2], are insufficient. The CMU Multi-PIE database [34],
3Ddynamic AU database [35], Bosphorus database [9], KDEF [33], BU 3D
facial expression databases [14,15], and ICT-3DRFE database [24] begin
to address the need for 3D (or multi-view) data but are limited to
posed facial behavior.

Recent efforts to collect, annotate, and analyze spontaneous facial
expression for community use have begun [26–28]. However, all are
limited to the 2D domain or thermal imaging. To address the need for
well-annotated, dynamic 3D video of spontaneous facial behavior in re-
sponse to meaningful and varied emotion inductions, we developed a
3D Dynamic Spontaneous facial expression database with annotation,
called the Binghamton–Pittsburgh 4D Spontaneous Expression Database
(BP4D-Spontaneous), for the research community. The contributions of
the work are as follows:

(1) We applied a series of well-designed tasks for authentic emotion
induction. The tasks include social interviews between the previ-
ously unacquainted people (one a naïve subject and the other a
professional actor/director), planned activities (e.g., games),
film clip watching, a cold pressor test for pain elicitation, a social
challenge to elicit anger followed by reparation, and olfactory
stimulation to elicit disgust.

(2) Well-experienced, certified FACS coders annotated the videos.
Frame-level ground-truth for facial actions was obtained.

(3) The effectiveness of the eliciting methods has been verified by
subject self-report and FACS analysis.

(4) An alternative subjective evaluation and validation were
conducted by human observer ratings.

(5) A set of meta-data, including AU codes, tracked 3D/2D features,
and head poses is provided.

(6) Additionally, the quality and usefulness of the database have also
been evaluated and validated through a number of applications
in spontaneous facial expression recognition, 3D dynamic Action
Units recognition, and a case-study for authentic pain expression
analysis.

The remainder of this paper is organized as follows. In Section 2, we
introduce thedata acquisition procedure, expression elicitationmethod,
and data processing and organization. In Section 3, we describe the cre-
ation of meta-data, including FACS coding, 3D/2D feature tracking, and
head pose estimation. The experimental method and data quality are
then evaluated through the analysis of the self-report information, sub-
jective ratings, and AU statistics in Section 4. In Section 5, we further
verify the usefulness of the database through applications in 4D sponta-
neous facial expression recognition and AU recognition, aswell as a case
study on pain expression analysis. Finally, concluding remarks and fu-
ture work are given in Section 6.

2. High-resolution data acquisition

2.1. System setup

A Di3D dynamic face capturing system [12] captured and generated
3D facial expression sequences. The data include both 3D model
sequences and 2D texture videos. The system consists of two stereo
cameras and one texture video camera. The three cameras are placed
on a tripod with two lighting lamps, one of each side of the cameras. A
calibrating board and a blue board are used for calibration and back-
ground segmentation. With one master machine and three slave
machines, the system captures the 3D videos at a speed of 25 fps. In ad-
dition to the 3D imaging system to capture the head-shoulder regions,
we have also setup a regular video camera to capture the entire scene
and audio for site monitoring and as a reference for possible audio-
visual editing in the future if needed. The data is captured in the normal
lighting conditions of an indoor lab environment. Fig. 1 shows an
example of the imaging system at work.
2.2. Data capture

Each participant was instructed to sit in front of the 3D face capturing
system at about 51 inches distance from the cameras. After view adjust-
ment and an initial preview capture, the capture procedure started by
following an emotion elicitation protocol as described below.
2.2.1. Emotional expression elicitation
We define the “spontaneous facial expressions” as facial actions that

are not deliberately posed, i.e., facial actions that occur in the course of
social interaction or other social or non-social stimuli. For recording
spontaneous affective behavior, a good trade-off between the acquisi-
tion of natural emotional expressions and data quality is needed. If the
recording environment is too constrained, genuine emotion and social
signaling become difficult to elicit. If the recording environment is un-
constrained, substantial error may be introduced into the recordings.
In the psychology literature, well-validated emotion techniques and
guidelines have been proposed to meet this challenge [43].

To elicit target emotional expressions and conversational behavior,
we used approaches adapted from other investigators plus techniques
that proved promising in our pilot test. Each task was administered by
an experimenter who was a professional actor/director of performing
arts. The tasks include interview, video-clip viewing and discussion, startle
probe, improvisation, threat, cold pressor, insult, and smell. Each task to-
gether with its target emotion is described in Table 1. Interviews elicit
a wide range of emotion and interpersonal behavior [56,57,60]. Film
clips and games [10,46,61] are well-validated approaches to elicit



Table 2
The frame number for each task among 41 participants.

Task #Frames

1 Interview 47,640
2 Video clip 65,555
3 Startle probe 12,863
4 Improvisation 60,647
5 Threat 52,323
6 Cold pressor 44,670
7 Insult 69,033
8 Smell 15,305
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emotion. Cold pressor is well studied to safely elicit pain expressions
without the risk of tissue injury [44]. Olfactory stimuli can reliably elicit
disgust [62]. These methods evoke a range of authentic emotions in a
laboratory environment [11].

After participants gave informed consent to the procedures and
permissible uses of their data, the experimenter explained the general
procedure (without giving any details about the specific tasks) and
began the emotion inductions. Following usage in the psychology liter-
ature, each emotion induction is referred to as a “task”. The experiment-
er was a professional actor and director. Each participant experienced
eight tasks, as summarized in Table 1. Those tasks were seamlessly
spaced with smooth transitions between them. Immediately after
each task, participants completed self-report ratings of their feelings
unless otherwise noted.

The protocol beganwith a conversation, which included joke telling,
between the participant and the experimenter. The relaxed exchange
and shared positive emotion were intended to build rapport and elicit
expressions of amusement. After rating the first experience, the partic-
ipant watched and listened to a documentary about a real emergency
involving a child, followed by an interview that gave them opportunity
to talk about their feelings in response to the task. Reactions of sadness
were the intended responses.

Next, the participant was asked to participate in several activities
with the experimenter. These included startle triggered by a siren, em-
barrassment elicited by having to improvise a silly song, fear while
playing a game that occasioned physical danger, and physical pain
elicited by submerging their hand in ice water. Following this cold
pressor task, the experimenter intentionally berated the participant to
elicit anger followed by reparation.

Finally, the participant was asked to smell an unpleasant odor to
evoke strong feelings and expressions of disgust. The tasks concluded
with a debriefing by the experimenter. Each task was recorded about
1–4 min and archived as described in sub-Section 2.3.

The procedures elicited a range of emotions and facial expressions
that include happiness/amusement, sadness, surprise/startle, embar-
rassment, fear/nervous, physical pain, anger/upset, and disgust.

2.2.2. Participants
Forty-one participants (23women, 18men)were recruited from the

departments of psychology and computer science as well as from the
school of engineering. They were 18–29 years of age; 11 were Asian, 6
were African-American, 4 were Hispanic, and 20 were Euro-American
(Table 3).

2.3. Data processing and database organization

For each task, there were three synchronized videos to be captured
from two gray-scale stereo cameras and one color video camera. The
Fig. 2. 2D and 3D examples of eight emotional expressions
stereo videos were processed by four machines (PCs) in parallel. Each
pair of stereo images is processed using a passive stereo photogramme-
try approach to produce its own range map. The range maps are then
combined to produce a sequence of high-resolution 3D images. The geo-
metric face model contains 30,000–50,000 vertices. The 2D texture
videos are 1040 × 1392 pixels/frame. Fig. 2 shows example expressions
of eight emotions elicited from eight tasks.

The database is structured by participant. Each participant is associat-
ed with eight tasks. For each task, there are both 3D and 2D videos.
Table 2 illustrates the total number of frames for each task across all 41
participants in the database. Although tasks varied in duration, to reduce
storage demands and processing time, each video consists of the seg-
ment duringwhich the participantwasmost expressive (about onemin-
ute on average). This reduced the retention of frames inwhich little facial
expression occurred. The video data are about 2.6 TB in size, and the av-
erage number of vertices for each 3D model is about 37,000.

Meta-data consists of manually annotated action units (FACS AUs),
automatically tracked head pose, and 2D/3D facial landmarks. Table 3
summarizes the 3D dynamic spontaneous facial expression database.
Fig. 3 shows the data structure of each task. Fig. 4 shows several samples
of 3D dynamic spontaneous facial expression sequences. Themeta-data
(e.g., AU codes, tracked features, and head poses) will be described in
detail in the next section.
3. Data annotation and meta-data creation

3.1. FACS coding

Automatic detection of FACS action units is a major thrust of the cur-
rent research in automated facial image analysis [22]. To provide neces-
sary ground truth in support of these efforts, we annotated facial
expressions using the Facial Action Coding System (FACS) [17,18].

For each participant, we code action units associated with emotion
and paralinguistic communication. Because FACS coding is time inten-
sive, we prioritized coding to focus on 20-second segments that were
most productive of facial expression.
from task 1 to task 8 (from left to right), respectively.

image of Fig.�2


Table 3
Summary of BP4D-spontaneous database.

# of
participants

# of tasks # of 3D + 2D
sequences

# of metadata sequences (i.e., annotated
AUs, facial landmarks, and poses)

41 8 328 328

Note: Asian (11), African-American (6), Hispanic (4), and Euro-American (20).
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For each of the eight tasks, FACS coders coded a 20-second segment
that had the highest density of facial expression. Coders were free to
code for longer than 20 s if the expression continued beyond that dura-
tion. If a videowas less than 20 s, it was coded in its entirety. Descriptive
statistics are reported in Table 4.

For each condition, two experienced FACS-certified coders indepen-
dently coded onsets and offsets of 27 action units per the 2002 edition of
FACS [36] usingObserver Video-Pro Software [21]. These AUs, the corre-
sponding amount of frames, and the number of AU events (from onset
to offset) for each are listed in Table 5. An event is defined as a continu-
ous series of AU from onset to offset. The observer system makes it
possible to manually code digital video in stop-frame and at variable
speed and later synchronize codes according to the digital time stamp.
For AU 12 and AU 14, intensity was coded as well on a 0–5 ordinal
scale using custom software.

To quantify the inter-observer exact (25 fps) agreement, the same
thirty-six randomly selected video segments were coded by both
coders. Their judgment was quantified using coefficient kappa [37],
which is the proportion of agreement above what would be expected
to occur by chance. Table 5 reports the kappa reliability.

In summary, the expression sequences were AU-coded by two
experts. For each sequence, 27 AUs were considered for coding. For
each of the target AUs, we have various numbers of coded events,
where an event is defined as the contiguous frames from onset to offset.

3.2. 3D feature tracking

We defined 83 feature points around the 3D facial areas of eyes,
nose, mouth, eyebrows, and chin contour in the initial frame of a
video sequence (see Fig. 6(a)). Extended from the active appearance
model approach [30], we applied our newly developed 3D geometric
surface based temporal deformable shape model [40] to track 83 points
on the 3D dynamic surface directly. Our developed method involves
fitting a new multi-frame constrained 3D temporal deformable shape
model (3D-TDSM) to range data sequences.We consider this a temporal
based deformable model as we concatenate consecutive deformable
shapemodels into a single model driven by the appearance of facial ex-
pressions. This allows us to simultaneously fit multiple models over a
sequence of time with one 3D-TDSM.

To construct a temporal deformable shape model, we applied a
representation of the point distribution model to describe the 3D
shape, in which a parameterized model S was constructed by 83 land-
mark points on each model frame. Such a set of feature points (shape
Task

3D model sequence

2D texture sequence

Labels (AUs) 

Facial landmarks

Head poses

Fig. 3. Organization of each task in database.
vector) was aligned by the Procrustes analysis method [30]. Principal
component analysis (PCA)was then performed on the new aligned fea-
ture vector to retain 95% of the variance of the model. This was done to
estimate the different variations of all the training shape data from the
mean shape S, as shown in Eq. (1). By adjusting the weight vector w
in the range, the instances of 3D-TDSM could be constructed. When
approximating a new shape S, the point distribution model was
constrained by both the variations in shape and the shapes of neighbor
frames. In our experiment, two neighbor frames were considered.

S ¼ Sþ Vw ð1Þ

D ¼
XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui−xið Þ2 þ vi−yið Þ2 þ wi−zið Þ2

q
ð2Þ

where N is 83. After creating the instance of 3D-TDSM, the 3D range
model was fully searched to find the closest point to each landmark
among the instances. Then, the weight vector w can be calculated.
Since the shape variation was limited by both the deformation rules
and the shapes of neighbor frames, if w was outside of the domain it
was discarded. For the remaining acceptable candidates, the Procrustes
distance, between the corresponding 3D-TDSM instance (u, v, w) and
the result from fitting (x, y, z), was computed (as shown in Eq. (2)).
The candidatewith theminimumD valuewas chosen as the tracking re-
sult. Fig. 5 illustrates the fitting process, and Fig. 7 (lower row) shows
several sample frames of the tracked 83 feature points on a 3D model
sequence. The detailed algorithm is described in [40].

3.3. 2D feature tracking

Two-dimensional facial expression sequences were automatically
tracked using the constrained local model (CLM) approach of [38,39].
Forty-nine landmark points were defined in the 2D face region (see
Fig. 6(b)). All CLM tracking was reviewed offline for tracking errors.
Coded were: 1) “Good tracking”; 2) “Multiple errors”; 3) “Jawline off”;
4) “Occlusion”; and 5) “Face out of frame”. A confidence score of track-
ing performance was given for each frame. If the score is lower than the
error threshold, the frame is reported as lost-track. Fig. 7 (upper row)
shows several sample frames with the tracked points.

Note that the 3D-TDSM tracks the 83 feature points purely based on
3D geometry shapewhile the 2D-CLM tracks 49 feature points based on
2D images only. The lost-track rates of 3D-TDSM and 2D-CLM are
0.148% and 0.194%, respectively. The tracked 3D points offer features
that are not reliably available from 2D tracking in case of large pose
variations. Since the two sets of tracking points were obtained indepen-
dently, they can be used for mutual verification and compensation, thus
allowing researchers for further study of feature alignment between 2D
and 3D, and developing algorithms for 2D/3D feature detection and
tracking with comparison to the baseline 2D/3D features that we
provide.

3.4. Head pose tracking

Head pose, which includes rigid headmotion, is important for image
registration and is itself of communicative value, (e.g., downward head
pitch when coordinated with smiling communicates embarrassment.)
Two sets of head pose data are provided based on 3D and 2Dmodalities.
In 2D texture sequence, head pose was measured from the 2D videos
using a cylindrical head tracker [19]. This tracker is person-
independent, robust, and has concurrent validity with a person-
specific 2D + 3D AAM [20] and with a magnetic motion capture device
[19]. In 3Ddynamic sequences, the 3D geometric features can derive the
pose information directly using three points (i.e., two eye corners and
one nose-base point). The head pose (pitch, yaw, and roll) was

image of Fig.�3


Fig. 4. Samples of textured models, shaded models, original 2D videos, and the annotated action units (AUs).
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Table 4
Descriptive statistics for FACS-coded videos (unit of measure is seconds).

Task Activity Minimum Maximum Mean

1 Interview 13.00 29.71 19.67
2 Video clip 12.12 25.00 20.21
3 Startle probe 8.56 16.76 12.25
4 Improvisation 16.14 24.12 19.74
5 Threat 18.53 31.00 20.74
6 Cold pressor 8.00 23.00 18.95
7 Insult 17.24 25.01 19.91
8 Smell 3.60 21.40 11.49

Note. Unit of measure is seconds. Data are based on video from all 41 participants.
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measuredwith respect to the frontal pose. Table 6 shows the proportion
of frames which differs from the frontal view. In the case of extreme
head movement, which causes over 50% partial occlusion of facial re-
gions, the pose information is not obtainable; thus, the frame is labeled
as lost-track.

Since the headpose information has beenderived from twodifferent
modalities with independent algorithms, the lost-track errors occur
only when both pose tracking methods fail. As a result, the lost-track
error of pose is only 0.063%. The error is reduced as compared to the
individual error rates of the two tracking methods (as indicated in
Section 3.3).

In short, the 3D-TDSM and the 2D-CLM provide the tracking results
of BP4D-Spontaneous in two modalities. The accuracy of head pose
tracking is increased due to the combination of the two tracking results.

4. Evaluation and analysis

In order to evaluate the effectiveness of the emotion elicitation, we
analyze the data statistically based on participants' self-report, subjec-
tive ratings from naïve observers, and AU distributions from coded
videos.
Table 5
Descriptive statistics for kappa reliability, events, and frames.

Action unit Name Kappa reliability Events Frames

1 Inner brow raiser 0.90 474 31,043
2 Outer brow raiser 0.95 380 25,110
4 Brow lowerer 0.92 408 29,755
5 Upper lid raiser 0.97 182 5693
6 Cheek raiser 0.91 540 67,677
7 Lid tightener 0.92 569 80,617
9 Nose wrinkler 0.91 140 8512
10 Upper lip raiser 0.90 591 87,271
11 Nasolabial deepener 0.94 33 7184
12 Lip corner puller 0.92 448 82,531
13 Cheek puller n/a 2 138
14 Dimpler 0.92 571 68,376
15 Lip corner depressor 0.79 657 24,869
16 Lower lip depressor 0.68 219 6593
17 Chin raiser 0.88 1203 50,407
18 Lip pucker 0.83 33 568
19 Tongue show 0.84 61 1197
20 Lip stretcher 0.95 105 3644
22 Lip funneler 0.95 46 606
23 Lip tightener 0.78 805 24,288
24 Lip pressor 0.86 457 22,229
27 Mouth stretch 0.95 55 1271
28 Lip suck 0.97 117 5697
30 Jaw sideways 0.95 15 506
32 Bite 0.98 26 1466
38 Nostril dilator 0.94 1 1319
39 Nostril compressor 0.97 25 657
Overall 0.90 8161 639,224

Note: Data are based on video from all 41 participants. Overall kappa is weighted average
based on 36 double-coded videos. An event is defined as a set of contiguous frames from
onset frame to offset frame.
4.1. Participants' self-report & analysis

After each task, participants used 6-point Likert-type scales (0 to 5,
none to extremely) to report their felt emotions for each task. The emo-
tions listed were relaxed, happiness/amusement, disgust, anger/upset,
sadness, sympathy, surprise, fear/nervous, embarrassment, physical pain,
and startle. As has been found previously [53], participants could and
did experience more than one emotion for each task. Fig. 8 shows the
highest rated emotions reported for each task. Similarly, Table 7 com-
pares the most highly-rated emotion and the target emotion for each
task. Except for task 7, the target emotion for each task (see Table 1)
was the one most highly rated by the majority of participants. For in-
stance, the highest bar of task 8 shows that the majority of subjects
rated the “disgust” emotion as the main emotion for that task. The
highest bar of task 6 shows themajority of subjects rated the “pain” feel-
ing as themain emotion. Accordingly, almost all of the other tasks show
this property aswell. For task 7, themost highly rated emotions could all
be expected from the context (anger at the experimenter, embarrass-
ment from not doing better). Overall, the tasks generally succeeded in
evoking the target emotions.

To study the emotion distribution, we analyze all scales except 0
(None) of the self-report rating of each task and illustrate the emotion
scale distribution in Fig. 9. The markers on each line show the intensity
percentage among the votes for the corresponding emotion category.
Note that one to three emotions for each task are selected for illustra-
tion. Our selection criteria are based on the results in Fig. 8; for each
task, we select a given emotion for illustration if its vote count in Fig. 8
makes up over 20% (approximately 13 votes) of the total votes for the
task. In general, Fig. 9 supports the findings of Fig. 8 in that the major
emotions of each task illustrated in Fig. 8 have high grades (scale 3
and above) in Fig. 9. In other words, the high grades (from scale 3 to
the highest scale 5) account for the majority of the votes from the 41
subjects for the target emotions of each task.

Most of the tasks could elicit multiple emotions or mixed emotions.
However, there is still a principal emotion for each task. For the tasks
such as task 2 (Documentary for Sadness), task 3 (Burst of Sound for
Surprise/Startle), task 6 (Cold Pressor for Physical Pain), and task 8
(Smell for Disgust), the majority of votes are distributed in the highest
(or second highest) grades, showing that the target emotion elicitation
of those tasks was successful and the intensity of the corresponding
emotions is strong. For task 7 (Insult for Anger/Upset), although the
intensity of “anger/upset” is not very strong, the “anger/upset” emotion
is still a major emotion of this task.

In general, the self-report information shows the target emotions
were elicited effectively.

4.2. Subjective rating and analysis

4.2.1. Expression labeling from naïve observers
To evaluate the results of the emotion elicitation, we conducted a

subjective rating experiment by asking naïve observers to label each
video with two of the eight expressions for all the tasks.

Five naïve observers were recruited to participate in the rating
experiment. First, the purpose of the experiment was explained to the
observer. Then, the observer watched the AU coded video segments of
all subjects in the database. The videos were presented randomly in
order to avoid any ordering effect, and the videos were also muted to
ensure that their rating was only based on the visual information. For
each video segment, eight expression labels were provided to choose
from. The observer was asked to choose up to two most likely expres-
sions in the order of their confidence. To indicate the confidence level
of each choice, the observer used a three-scale list which represents
high confidence, moderate confidence, and low confidence. The observer
was allowed to replay the video segment if needed. A timer was started
when a given video segment was started, and it was stopped when the
final choices for the segment were made. In this way, the expression



Fig. 5. Eight samples of the 3D-TDSM candidates. The distance score is listed at the top of each candidate. The one with the minimum score (bottom right) is the best fit.

Fig. 6. (a) 3D and (b) 2D landmarks' indices.
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rating and judgment timewere also recorded. If the target emotion of a
taskwas recognized by an observer correctly, whichmeans that the cor-
responding target expressionwas included in the top two choices by the
observer, we count it as a correct recognition. The results show that the
correct recognition rates of five naïve observers are 61% (happiness),
77.1% (sadness), 94.6% (startle), 65.9% (embarrassment), 73.2% (fear),
66.8% (pain), 55.1% (anger), and 83.4% (disgust).
Fig. 7. CLM-tracked feature points on a 2D sequence of a male subject (upper row); a samp
4.2.2. Analysis of subjective ratings
The inter-rater reliability was examined using Fleiss' kappa coeffi-

cient [37]. This has been used to assess the reliability of agreement be-
tween raters when assigning categorical ratings to a number of items.
In our case, five raters assigned eight expression categories to all 328
video segments. The kappa value is in the range of−1 to 1, correspond-
ing to a negative range (−1, 0) and a non-negative range (0, 1). The
le 3D sequence with 3D-TDSM tracked feature points of a female subject (lower row).
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Table 6
Proportion of frames in different pose relative to the frontal view.

Pitch Yaw Roll

b5° 60.3% 80.0% 86.4%
b10° 94.7% 97.5% 98.0%
b15° 99.5% 99.6% 99.8%
b20° 99.9% 99.8% 99.9%
N20° 0.1% 0.2% 0.1%

Table 7
Major emotions elicited from each task based on self-report.

Task Target emotion Emotion most reported

1 Happiness or amusement Happiness/amusement
2 Sadness Sadness
3 Startle or surprise Startle, surprise
4 Embarrassment Embarrassment
5 Fear or nervous Nervous/fear
6 Physical pain Physical pain
7 Anger or upset Anger/upset, embarrassment
8 Disgust Disgust
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non-negative value between 0 and 1 can be divided into 0.2 sized steps.
Therefore, a total of 6 levels can be generated. Landis and Koch interpret
the six levels as poor, slight, fair,moderate, substantial, and almost perfect
agreement, respectively [63].

Table 8 shows the Fleiss' kappa value for 8 expression categories. The
overall kappa indicates moderate agreement between all observers.

To further evaluate the performance, observers' confidence level and
their judgment time factor are also studied. We assigned to the confi-
dence levels low,moderate, and high the values 0, 1, and 2, respectively.
The judgment time factor is a value of a given judgment time divided by
the length of the corresponding video segment of a task. If an observer
spends more time to make a decision than the length of the video
segment, the factor of the task is larger than 1. Otherwise, the factor is
less than 1 if less time is used. Table 9 lists the average values of confi-
dence levels and the average values of judgment time factor.

To assess the performance of the human observers, a confusion ma-
trix with respect to the accuracy of the expression ratings from the five
naïve observers is illustrated in Table 10. The diagonal line shows the
correct recognition rates. Among them, startle, disgust, and sadness are
among the three most distinguishable spontaneous expressions with
the three highest recognition rates by observers. Happiness is some-
times confused with embarrassment as people sometimes show a soft
smile in an embarrassing situation. For the improvisation task, subjects
felt embarrassed, and, in the insult task, subjects could also feel
embarrassed if they thought they had not performed well. It is not
unusual for people to restrain their genuine negative emotions in social
activities. People are likely to show a soft smile in an awkward situation
to defuse tension. Thus, the smile could be misread by observers.

The diversity and variety of spontaneous expressions still pose a
challenge for human observers to distinguish them. However, in gener-
al, the correct classification rates for all the expressions in Table 10 are
still dominantwhen compared to themisclassification rates. The results
are comparable to the results obtained with machine recognition
(which will be described in Section 5.1). This shows that our elicitation
Fig. 8. Statistics of self-report emotion distribution for task 1 to task 8 (from left to right);
vertical axis is the number of votes.
method is effective when eliciting distinctive facial activities associated
with different tasks. The distinctive dynamic information exhibited
in spontaneous expressions benefits expression reading by human
observers.

4.3. Action unit analysis

4.3.1. AU distribution in spontaneous expressions
Holistic expressions of emotion can be defined in terms of one or

more anatomic actions [52,54,55]. Following the previous work [16,
48–50], Table 11 shows amapping between AU(s) and the hypothetical
emotion. Table 12 shows the 27 action unit distributions across the
eight tasks. The value is a percentage P that is defined as follows:

P ¼ NAUi=Nt ð3Þ

whereNAUi is the number of frames that show the ith coded AU of a task
(i = 1, 2, …, 27), and Nt is the total number of AU coded frames of the
task (t= 1, 2,…, 8). In this section, we report the extent towhich holis-
tic expressions defined using AUs corresponded to the target emotions.

The AU distribution among different elicitation tasks illustrates the
complexity and diversity of spontaneous expressions. As we can see in
Table 12, 41 subjects show genuine expressions which cover all the 27
action units. Also, the frequencies of different AU occurrence vary dra-
matically across both AUs and tasks. Unlike posed expressions, the facial
action of spontaneous expressions appears involuntarily. In Table 11, AU
12 is related to happiness, and indeed a standard happy face contains
AU 6+ 12. In Table 12, it shows that column T1 has a major occurrence
of AU 6 (61.7%) and AU 12 (81.9%). However, it does not mean that AU
12 is unique to happiness. In fact, AU 12 occurred with varying frequen-
cies in all tasks. This is consistent with the hypothesis that AU 12 (smil-
ing) is not specific to positive emotion.While AU 12 is a defining feature
of expressed enjoyment, it occurs in pain, embarrassment, and other
negative emotions as well as in depression [51,58,59]. In Table 11, we
know that disgust has either AU 9 or AU 10 present, and task 8 (experi-
ence an unpleasant smell) gives the highest percentages of AU 9 (27.8%)
and AU 10 (72.1%) among all tasks. AU 4 and AU 9 are related to nega-
tive emotions. AU 4 shows relatively high percentages in negative emo-
tion tasks such as T2 (43.6%), T6 (31.0%), and T8 (43.3%), while it shows
low percentages in tasks for happiness (7.1%). Similar evidence can be
found for AU 9.

4.3.2. Effectiveness of elicitation
Besides participants' self-report and observers' rating report, we fur-

ther study the AU distribution to verify the effectiveness of our emotion
elicitation method objectively.

Using the criteria listed in Table 11,we examinewhether someAUs of
the target emotions appear most frequently in the corresponding tasks.
According to the percentage of AU sets that each task has in Table 12,
the top two ranked tasks (in order from left to right) are illustrated in
Table 13. The first column lists the AU criteria to be used for matching
the corresponding target emotions (as the second column shows). For
example, ‘12, 24’ means that either AU 12 or AU 24 needs to appear for
the target emotion Embarrassment; and ‘1 + 2 + 4, 1 + 2 + 5’ means
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Fig. 9. Self-reported emotion distribution across 5 scales (very slightly, a little, moderately, quite a bit, extremely) in each of the eight tasks (from left to right, top to bottom, the charts
correspond to the tasks 1–8 as shown in Fig. 8).
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either AU 1+2+4 or AU 1+2+5needs to appear for the target emo-
tion Fear/Nervous. The third column shows the top two ranked tasks
based on the corresponding AU counts from the spontaneous expres-
sions of 41 subjects. It shows that the corresponding AUs appeared
most frequently in the top two tasks. Moreover, these two top tasks al-
ways include the expected target emotion for all the cases (bold font).
This verifies that our elicitation method is effective in eliciting the target
emotions. As an example, in the second row, AU 4 is used as a criterion
formatching the sadness (task 2). As a result, AU 4 has themost frequent
occurrence in task 2 based on Table 12. Therefore, the top ranked task is
the sadness task, which is exactly the expected target emotion.
Table 8
Kappa coefficients from multiple raters for expression categories.

Expression Kappa value

Happiness/amusement 0.4325
Sadness 0.6335
Startle 0.8366
Embarrassment 0.4128
Fear 0.4933
Physical pain 0.5250
Anger 0.3724
Disgust 0.7193
Overall 0.5535
Therefore, we can see that the AU distribution of the BP4D-
Spontaneous database verifies the distinctiveness of the spontaneous
expressions. Similar to the results from the self-reported emotions, the
findings for holistic expressions suggest that the tasks were effective
in eliciting the target emotions.

5. Validation & application in facial expression analysis

5.1. 4D spontaneous facial expression recognition

To validate the data for spontaneous facial expression recognition,
we apply an existing 3D dynamic facial expression descriptor [42] for
Table 9
Average value of confidence level and judgment time factor for expression categories.

Expression Conf. level Judgment time factor

Happiness/amusement 1.810 1.059
Sadness 1.780 1.139
Startle 1.941 0.962
Embarrassment 1.868 1.039
Fear 1.932 0.910
Physical pain 1.839 1.041
Anger 1.824 1.159
Disgust 1.941 1.162
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Table 10
Confusion matrix for the relationship between target expression and observers'
recognition.

Rec. Hap. Sad. Star. Emb. Fear Pain Ang. Dis.

Tar.

Hap. 0.610 0.010 0.029 0.166 0.029 0.020 0.112 0.024
Sad. 0 0.771 0.029 0 0.093 0.029 0.044 0.034
Star. 0 0.020 0.946 0 0.010 0.020 0 0.005
Emb. 0.249 0 0.010 0.659 0.034 0.005 0.029 0.015
Fear 0.049 0.005 0.039 0.059 0.732 0.044 0.059 0.015
Pain 0.024 0.059 0 0.044 0.068 0.668 0.093 0.044
Ang. 0.161 0.039 0.015 0.122 0.078 0.024 0.551 0.010
Dis. 0.015 0.015 0 0.015 0.049 0.054 0.020 0.834

Table 12
27 action units percentage (%) in all tasks.

Task T1 T2 T3 T4 T5 T6 T7 T8

AU

1 13.6 21.7 18.1 21.2 38.9 14.8 18.1 20.6
2 15.7 8.9 18.0 23.6 27.9 10.7 17.5 13.0
4 7.1 43.6 19.3 9.0 11.2 31.0 6.3 43.3
5 2.4 7.0 7.9 2.6 4.5 1.0 4.7 0.9
6 61.7 6.5 26.2 75.6 60.0 39.9 44.7 48.4
7 62.2 28.4 34.7 69.1 65.1 57.1 52.8 68.4
9 1.3 0.1 4.4 2.2 7.2 10.4 1.5 27.8
10 71.1 16.1 28.8 81.5 76.1 57.2 67.1 72.1
11 9.1 0.1 4.1 3.9 4.8 7.2 3.7 7.3
12 81.9 2.3 32.5 89.7 79.3 36.8 67.3 48.8
13 0 0 0 0 0 0.7 0 0
14 50.6 21.1 36.5 56.2 54.6 49.6 53.2 48.5
15 16.4 6.4 8.6 16.5 22.9 10.9 22.4 35.7
16 4.3 2.2 4.3 5.1 6.0 6.1 5.0 1.9
17 32.9 30.8 21.3 35.0 37.5 36.1 32.8 49.6
18 0.4 0.5 0 0.6 0.7 0.1 0.3 0.4
19 0.5 0.5 1.1 1.0 1.3 0.9 0.7 0.5
20 0.8 0.2 2.7 4.0 1.1 6.2 1.4 4.5
22 0.4 0 0.2 1.7 0.1 0.1 0.6 0
23 14.7 8.5 9.7 19.3 17.5 24.5 19.3 16.9
24 11.8 15.8 11.5 10.1 15.4 26.1 10.3 21.7
27 0.9 1.2 0.9 0.5 0.3 1.1 1.6 0.2
28 2.6 6.7 2.5 1.5 5.4 7.5 2.2 1.0
30 0.1 0.3 0.6 0.3 0 1.4 0.1 0.1
32 1.8 0 0.3 1.0 2.5 1.2 0.5 0
38 0.3 1.1 1.5 0 0.2 3.3 0.6 0.3
39 0.1 0.8 0.1 0.3 0.2 1.4 0 0.6
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expression classification. A Hidden Markov Model (HMM) is used to
learn the temporal dynamics and spatial relationships of facial regions.
To do so, a generic model is adapted to each range model of a 3D
model sequence. The adaptation is controlled by a set of 83 key points
based on the radial basis function (RBF). After adaptation, the corre-
spondence of the points across the 3D range model sequence is
established. We apply a surface labeling approach [42] to assign each
vertex one of eight primitive shape types. Thus, each range model in
the sequence is represented by a “labelmap”. We use LinearDiscrimina-
tive Analysis (LDA) to transform the label map to an optimal compact
space to better separate different expressions. Given the optimized fea-
tures, an HMM is trained for each expression. Note that the HMM is ap-
plied to the optimal features of the labelmap rather than the trajectories
of 83 landmarks. In recognition, the temporal/spatial dynamics of a test
video is analyzed by the trained HMMs. As a result, the probability
scores of the test video to each HMM are evaluated by the Bayesian de-
cision rule to determine the expression type of the test sequence.

We conducted a person-independent experiment on 41 subjects.
Following a 10-fold cross-validation procedure, we used 39 subjects
for training and 2 subjects for testing, and achieved an average correct
recognition rate of 73.7% for distinguishing eight spontaneous emotion-
al expressions.

In order tomake a comparison to the existingwork [15,42], where six
prototypic posed 3D dynamic facial expressions were used for recogni-
tion, we have also conducted an experiment for six prototypic spontane-
ous 3D dynamic expression recognition using the same 41 subjects. The
results show that the correct recognition rate is 76.1%. Note that sponta-
neous expressions are more difficult to classify than posed expressions.
When the same approachwas applied to the 3Dposed dynamic facial ex-
pression database BU-4DFE [15], a recognition rate for classifying six
posed prototypic expressions is 83%. The performance degradation on
classifying 3D spontaneous expressions is due to the complexity, mix-
ture, and subtlety of the spontaneous expressions in the new database.

To further evaluate our approach, we conducted a comparison study
by implementing the 3D static model-based approach using geometric
primitive features [29] and the 2D texture-based approach using
Gabor-wavelet features [31] to classify eight expressions from the entire
BP4D-Spontaneous database. Note that we used two approaches in the
case of the static image or static model. In the first approach, we chose
Table 11
Emotion description in terms of facial action units.

Target emotion Criteria

Happiness or amusement AU 12 present
Sadness Either AU 1 + 4 + 15 or 11 or AU 6 + 15
Surprise or startle Either AU 1 + 2 or 5 must be present for surprise

AU 7 for startle
Embarrassment AU 12 or 24
Fear or nervous AU 1 + 2 + 4 or AU 1 + 2 + 5
Physical pain AU 4, 6, 7, 9, 10
Anger or upset AU 23 and 24 must be present in the AU combination
Disgust Either AU 9 or 10 must be present
an apex frame of each video sequence for the experiment. In the second
approach, we chose three frames (a frame between onset and apex,
apex frame, and frame between apex and offset); we then applied ex-
pression classification on the three frames individually. The output con-
fidence levels (output scores measured by the probability of Naïve
Bayesian Classifier) for the three frames were fused by averaging the
output scores for each expression. Among 8 expressions, we chose the
highest fused score as the recognized expression. The average recogni-
tion rates for the static model and static frame based approaches were
62.4% and 63.2%, respectively. The average recognition rates for the
three-models and three-frames-based approaches were 65.7% and
66.8%, respectively. The three-frame fusion approach does show im-
proved performance; however, the results are not as good as those
from the 3D dynamic model-based approach (i.e., 73.7% as shown
above for distinguishing eight spontaneous expressions from the entire
database).
5.2. Cross-database 4D facial expression classification

We also performed a cross-database validation on our new 4D spon-
taneous database. A posed facial expression database (BU-4DFE [15])
was used for training, and the spontaneous database was used for
testing.
Table 13
Top two tasks based on FACS emotion descriptiona.

AU criteria Target emotion Top two tasks indices

12 Happiness/amusement Embarrassment, happiness/
amusement

4 Sadness Sadness, disgust
5 Surprise/startle Startle, sadness
12, 24 Embarrassment Embarrassment, happiness/

amusement
1 + 2 + 4, 1 + 2 + 5 Fear/nervous Fear/nervous, startle
4 + 6 + 7 + 9 + 10 Physical pain Disgust, physical pain
23 Anger/upset Physical pain, anger/upset
9 + 10 Disgust Disgust, physical pain

a In the third column, the corresponding target emotion is in bold font.



Table 14
Spontaneous action unit recognition accuracy results: “All” = all blocks used;
“Best” = best blocks used.

AU Nebula LBP-TOP 2D LBP-TOP depth

All Best All Best All Best

1 54.1% 58.4% 57.9% 49.4% 52.4% 48.5%
2 63.0% 64.8% 59.2% 55.4% 55.9% 53.1%
4 58.7% 63.1% 53.3% 48.4% 51.1% 48.9%
6 67.6% 68.8% 64.8% 64.8% 61.3% 61.7%
7 58.9% 58.0% 55.4% 51.9% 52.4% 53.2%
10 66.4% 65.9% 62.1% 54.3% 56.9% 58.6%
12 57.3% 57.8% 59.1% 54.7% 53.3% 54.7%
14 54.5% 59.1% 52.3% 46.4% 52.8% 48.1%
15 66.0% 69.0% 64.5% 61.6% 63.1% 62.1%
17 61.8% 65.6% 60.0% 44.6% 53.3% 43.5%
23 60.6% 61.4% 58.5% 53.4% 59.3% 55.5%
24 67.1% 67.6% 63.4% 56.3% 62.9% 54.0%
Avg. 61.3% 63.3% 59.2% 53.4% 56.2% 53.5%
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We extended the idea of a 3D surface primitive feature into 4D space
anddeveloped a new feature representation: the so-called “Nebula” fea-
tures [41]. Given each vertex on the face, a local spatiotemporal volume
is built from the neighbor points across all frames in a timewindow (in
our experiment, window size is 15 frames). Spatial neighborhood radius
sizes of 3, 5, and 7 millimeters were tested, and the corresponding spa-
tial voxel dimensionswere 7 × 7, 11 × 11, and 15× 15, respectively. The
neighborhood data are voxelized (with x, y, t as the dimensions and
depth z as the values) and fit to a cubic polynomial:

f x; y; tð Þ ¼ A
1
2
x2 þ B

1
2
y2 þ C

1
2
t2 þ Dxyþ Ext þ Fyt

þ Gx3 þ Hy3 þ It3 þ Jx2yþ Kx2t þ Lxy2 þMy2t þ Nxt2

þ Pyt2 þ Qxþ Ryþ St þ U ¼ z:

ð4Þ

The principal curvature directions and values are computed from the
eigenvectors/eigenvalues of the Weingarten matrix:
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Fig. 10. 4D Nebula feature construction: (a) sample voxel; (b) resulting polynomial volume; p
cylinder); (c) φ (phi) angle of least curvature direction from the time axis (shown as Z axis in
A label is assigned based on the principal curvature values and a
threshold T. Although this label compactly describes the shape of the fea-
ture, it does not give us its orientation. This orientation information is
vital, since it can give us an indication of whether the surface changes
across time or not. For example, consider two features with cylindrical
shapes. Both have the same label; however, one may be oriented along
the time axis, indicating no change across time, while the other may be
perpendicular to the time axis, indicating a sharp change across time.
Therefore, we use the label as well as the polar angles of the direction
of least curvature as the values for each feature. The face area is then di-
vided into regions. A 3Dhistogram is built for each region of the facewith
the features in that region. The variables for that histogram are the shape
label and the two polar angles for each feature. The concatenated histo-
grams from each of the regions give us our final feature vector. The con-
struction of a single Nebula feature is shown in Fig. 10.

We selected data (happiness, disgust, and neutral) fromBU-4DFE for
training. We then tested directly on the spontaneous data using the
Nebula feature approach. Our overall average accuracy was 71%. From
the experiment, we find that Happy-Onset is often mistaken for
Disgust-Onset. One possible explanation is that the spontaneous smiles,
since they aremostly genuine smiles, also showactivity around the eyes
similar to some of the Disgust expressions; the posed smiles from BU-
4DFE do not always demonstrate this. To the best of our knowledge,
this is the first time that a cross-database test on 4D expression data
has been performed. Spontaneous expression data is almost invariably
more difficult to classify than posed expression data. As a consequence,
we believe our results are encouraging.
5.3. Action unit recognition on spontaneous 4D data

We also performed experiments in AU recognition on BP4D-
Spontaneous.We selected 16 subjects and tested on 12AUs using a sup-
port vector machine classifier. Please note that we only tested on the
AUs listed in Tables 14 and 15. In the database, the AUs are marked as
present or not present for each annotated frame. Several 9-frame win-
dows were extracted around several transition points (either near the
apex frame or near the offset frame) for each AU. Segments without
the AU in question were also extracted. With three different states per
AU (“AU Onset”, “AU Offset”, and “No AU”), tests were conducted on
each AU individually.
rincipal axes shown in red, green, and blue, in order of curvature magnitude (label = 14,
image); (d) θ (theta) angle of least curvature direction in the XY plane.
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Table 15
Spontaneous action unit recognition AUC score results: “All” = all blocks used;
“Best” = best blocks used.

AU Nebula LBP-TOP 2D LBP-TOP Depth

All Best All Best All Best

1 0.621 0.640 0.631 0.584 0.627 0.574
2 0.682 0.697 0.642 0.586 0.614 0.602
4 0.657 0.700 0.637 0.578 0.589 0.601
6 0.796 0.800 0.774 0.783 0.768 0.758
7 0.696 0.680 0.678 0.662 0.660 0.648
10 0.791 0.773 0.739 0.668 0.686 0.705
12 0.703 0.726 0.732 0.691 0.653 0.663
14 0.682 0.717 0.648 0.605 0.624 0.583
15 0.739 0.784 0.688 0.626 0.731 0.705
17 0.758 0.801 0.713 0.607 0.681 0.598
23 0.704 0.722 0.675 0.614 0.702 0.639
24 0.774 0.791 0.713 0.633 0.720 0.592
Avg. 0.717 0.736 0.689 0.636 0.671 0.639

Table 16
P score of paired T-test on discrimination between pain and other emotion tasks on AU 6,
AU 9, and AU 10.

Task T1 T2 T3 T4 T5 T7 T8

T6 0.01 4.50 × 10−7 3.52 × 10−4 4.15 × 10−5 3.08 × 10−4 0.03 0.02
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Various parameter combinations and regular grid block region con-
figurations were tested. Specifically, block configurations with 15, 24,
35, 54, 77, and 96 blocks were tested. The number of rows and columns
in each block region configuration was chosen to make the individual
blocks square, given the size of the facial region. In addition to using
all of the blocks of an entire face for a given configuration,we also tested
using the “best” blocks for each AU. The best set of blocks is chosen
based onwhere the AU appears on the face. The best blocks are in effect
either dividing the face into top and bottom halves or taking themiddle
third of the face. For example, since AU 15 occurs around themouth, the
“best” region blocks for that AU are all the blocks in the lower half of the
face; that is, the blocks on the top part of the face are excluded. In cases
where the division of blocks was uneven, blocks were included rather
than excluded (for instance, if the face was divided into 5 rows and
we needed the top half of the face, rows 1, 2, and 3 were chosen).
Table 17
Spontaneous action unit recognition: confusion tables for best accuracies with nebula 4D appr
The Nebula feature approach was again employed here. We also
tested using the LBP-TOP (Local Binary Patterns from Three Orthogonal
Planes) [47] approach on the re-rendered, pose-normalized texture im-
ages and the corresponding depth images. The accuracy results for all
three approaches are shown in Table 14, while the AUC (Area Under Re-
ceiver Operating Characteristic Curve) score results are shown in
Table 15. The confusion tables using the Nebula feature approach for
each AU (using the parameters yielding the best accuracies) are
shown in Table 17.

The average recognition AUC score using the ideal Nebula approach
for each AU (i.e., all or “best” blocks) was over 0.738. This validates the
usefulness of the new database as well as demonstrates the effective-
ness of the test approaches. The highest average accuracy among all ap-
proaches is 63.3% from Nebula on the “best” blocks. Thus, we achieve
over 4% better accuracy on average with the Nebula approach over the
most accurate LBP-TOP approach (LBP-TOP 2D on all blocks). The AUC
scores follow the same pattern, with Nebula on the “best” blocks giving
us 0.736 AUCwhile the best LBP-TOP score (LBP-TOP 2Don all blocks) is
0.689. In Table 17, a common source of confusion is themisclassification
between onsets/offsets and non-existence of an AU. Thismay due to the
fact that spontaneous expression data is more challenging for AU recog-
nition than that for posed expression data.

Note that in Tables 14 and 15, if we compare the “best” region results
between Nebula and LBP-TOP 2D for individual AUs, the former is al-
ways better than the latter one. For the “all” region test, this is also
true except for AU 1 andAU12.Wealso note that in LBP-TOP2D the tex-
tured image has been pose-normalized. The results can be worse for
pure 2D-based recognition approaches. This proves that 3D face repre-
sentation surpasses the 2D image representation by isolating the facial
components such as expression, head pose and skin tone in this exper-
iment. In our case, facial expression data can be extracted efficiently for
our experiments. Contrariwise, to analyze expression in 2D, researchers
need to carefully deal with challenges from pose prediction and skin
color normalization, etc., and the error coming with the pre-
processing stage can contaminate the training procedure. In short, we
believe that the new data and our test approaches show promise. Fur-
ther details are described in [41].

5.4. Case study — pain analysis with BP4D-spontaneous database

To further validate the usefulness of the 4D spontaneous data, we
choose the spontaneous expression physical pain for a case study. The
oach.

Unlabelled image


(a) Physical pain appearance from a non-pain activity sequence. Examples
are the 1177th, 1290th, 1369th, and 1410th frames in the sequence. 

(b) Physical pain appearance from a genuine pain sequence. Examples 

 are the 14th, 99th, 203th, and 246th frames in the sequence. 

Fig. 11. a: Physical pain appearance from a non-pain activity sequence. Examples are the 1177th, 1290th, 1369th, and 1410th frames in the sequence. b: Physical pain appearance from a
genuine pain sequence. Examples are the 14th, 99th, 203th, and 246th frames in the sequence.
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goal is to evaluate spontaneous pain appearance with automated AU
recognition. In this case, the contributed AUs may be different from
the typical AUs for pain listed in Table 11. To find the contributed AUs,
we use the paired t-test on the possible subset of pain AUs (AU 4, 6, 7,
9, 10) for all tasks of the database. This test is to assess whether pain
and other spontaneous expressions are different in terms of the AU
quantity. For each possible AU, the percentage of frames with this AU
is reported for each task per subject. Here we find that in terms of AU
quantity the differences between pain and all other expressions are sig-
nificant with AU 6, AU 9, and AU 10 (p b 0.05, shown in Table 16).
Therefore, the automated AU recognition system is built based on
these three AUs. The positive data (AU appearance) set is acquired

image of Fig.�11
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from task 6 (a total of 19,524 frames), while the negative data (No AU
appearance) is from task 2 (a total of 20,837 frames) as it has the min-
imum p value (4.50 × 10−7).

To generate the facial features, face normalization and feature regis-
tration procedures are applied through rotating the face model to a
frontal view, cropping the 3D face region, and normalizing it to a stan-
dard size of a 72×72matrix alongwith the landmark andpose informa-
tion. Then, a Gabor wavelet filter with 3 spatial scales and 8 orientations
is applied to generate the feature vector.

Principal component analysis (PCA) is used to reduce the feature di-
mension to 200. Three binary support vector machines (SVMs) are then
trained with one label per frame using a radial basis function (RBF) ker-
nel for three AUs separately. The output margin to the SVM hyper plane
is used to generate the ROC curves. A leave-one-subject-out validation
method is used for all 41 subjects in the database. Each test subject's se-
quence from task 2 and task 6 has been used as the negative test se-
quence and positive test sequence, respectively.

The average AUC scores weighted by the positive sample numbers
for AU 6, AU 9 and AU 10 are 0.865, 0.667, and 0.806 respectively. The
pain appearance can be categorized in 8 (=23) types, depending on
the occurrence of each AU (0 or 1). If none of the three AUs appears,
the face shows no pain.

In Fig. 11(a–b), we illustrate the AU recognition performance, pain
categories, and example frames. In each figure, sample frames are
displayed on top. For AU 6, AU 9, and AU 10, each has been plotted
with two curves, i.e., a green curve representing the automatic recogni-
tion result, and a dashed blue curve representing the ground truth
from the binary AU coding. For each AU in a frame, it is labeled to 1 if
the AU occurs, or 0 if the AU does not appear. Based on the eight kinds
of combinations, different color indicates different pain appearances as
shown in the bar “pain categories”. ‘Red” shows intense pain and
“Blue” shows no pain.

Fig. 11a shows the result of pain detection along a sequence of task 2,
in which the subject was watching a documentary. The accuracy for AU
6 and AU 10 is 1, and the AUC score for AU 9 is 0.93. In such a non-pain
activity, the subject did not showany pain expression according to AU6,
AU 9 and AU 10. The resultsmatch the ground-truth (dashed blue lines)
very well in most of the sequence except for very few frames where a
single AU 9 is falsely identified.

Fig. 11b shows the pain detection results when the subject was sub-
merging his hand in icewater (task 6). TheAUC scores for AU6 andAU9
are 0.98 and 0.70, and the accuracy for AU 10 is 1. As an example, the
second frame in Fig. 11b shows a less painful expression as compared
to the others. Only AU 10 was detected for that frame.

Thus, we have taken physical pain as a study case to show how the
spontaneous expression data and the corresponding meta-data (AU
codes, pose, and feature data) could be used for automated expression
recognition. Based on this study, more applications of 3D-based pain
analysis and further investigation of a complete set of pain-related
AUs could be developed in the future.
6. Conclusion and future work

In this paper, we reported our newly developed spontaneous 3D dy-
namic facial expression database (the so-called “BP4D-Spontaneous” —
Binghamton–Pittsburgh 4D Spontaneous Facial Expression Database).
Such a database can be a valuable resource to facilitate the research
and development of human behavior analysis in security, HCI, psychol-
ogy and biomedical applications.

It is worth noting that stimulating genuine emotions with spontane-
ous facial expressions in a controlled environment is still a challenging
issue. Our BP4D-Spontaneous data focused on facial actions that are
not deliberately posed. Rather, they occur in the course of social interac-
tion and other social or non-social stimuli. The guided format using a
professional actor and director as the experimenter sought to simulate
a more natural setting while guaranteeing high quality 3D/2D dynamic
facial expression data.

The AU annotation by expert coders provides valuable information
about spontaneous facial behavior. However, the diversity of spontane-
ous expressions and the mixture of different expressions still pose big
challenges for emotion and expression recognition.

Expression analysis on 2D data suffers from head pose variation, illu-
mination change, self-occlusion, etc. These influences can be removed
or reduced by 3D representations. BP4D-Spontaneous addresses this
issue by providing 3D time-varying spontaneous facial expression data.
Whenweuse “Nebula” and LBP features to recognizeAUs,we alsonoticed
that the performance varieswith different AUs. Thismaydue to the differ-
ent types of features exhibited bydifferent AUs. For example, AU4 andAU
9 create lines and furrows, while AU 25 reveals a new feature by showing
teeth. That said, there may not be a panacea feature for recognition of all
action units. In BP4D-Spontaneous, 3D/2D imaging data and the corre-
sponding trackingpoints provide important information for feature distri-
bution and discrimination. Combining the features from the 3D and 2D
domains may improve the expression recognition performance.

In future work, other settings and image capturing setups might be
considered. Data quality could be improved by using a wider range im-
aging system which is more robust to different illumination conditions.
The database will also be expanded to include more subjects.

Moreover, our current database includes sequential geometric model
data and texture data. In addition to the facial feature tracking algo-
rithms, more powerful approaches need to be investigated in order to
make the data processing and visualization fast and accurate. Automatic
data annotation, registration, and efficient data representation (or com-
pression) for micro-expression analysis will also be our next research
direction.
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