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Abstract—Detecting action units is an important task in face
analysis, especially in facial expression recognition. This is due,
in part, to the idea that expressions can be decomposed into
multiple action units. In this paper we investigate the impact
of data distribution (e.g. number of active action units, and
patterns of action units) on the accuracy of detecting action
units. To facilitate this investigation, we review state of the art
literature, for AU detection, on 2 state-of-the-art face databases
that are commonly used for this task, namely DISFA, and BP4D.
We also conduct multiple experiments on BP4D to validate our
findings, which suggest that there are explicit detection patterns
that are directly impacted by distribution of the action units.
This pattern exists across a range of classification methods that
include convolutional neural networks, long short-term neural
networks, and support vector machines. In many works F1-
binary scores are used to evaluate the accuracy of action unit
detection methods. Our findings also suggest that the patterns
strongly impact the F1-binary scores, and that using other
metrics such as Fl-macro, F1-micro, or Area Under the Curve
(AUC) scores along with more balanced data can help with
breaking this impact.

Index Terms—action units, detection, distribution

I. INTRODUCTION

Facial expression recognition is a growing field that has
attracted the attention of many research groups due in part
from early work from Picard [18]. A range of modalities
have been found useful for this problem including 2D [3],
[27], thermal [17], [24] and 3D/4D data [1], [4]. Promising
multimodal approaches to expression recognition have also
been proposed [14], [25]. Another interesting approach to
facial expression recognition is based on the detection of
action units (AU). These works are based on the Facial
Action Coding System [8] (FACS), which is seminal work
that decomposes facial expressions into a set of action units.

There have been promising approaches to action unit de-
tection that have made use of both hand-crafted features,
as well as deep learning. Liu et al. [15] proposed TEMT-
NET that utilizes the correlations between AU detection and
facial landmarks. Their proposed network performs action
unit detection, facial landmark detection, and thermal image
reconstruction simultaneously. The thermal reconstruction and
facial landmark detection provide regularization on the learned
features providing a boost to AU detection performance.
Werner et al. [26] investigated action unit intensity estimation
using modified random regression forests. They also developed
a visualization technique for the relevance of the features.
Their results suggest that precomputed features are not enough
to detect certain AUs. Li et al. [12] proposed the EAC-Net,
which is a deep network that enhances and crops regions of

interest for AU detection. They found the proposed approach
allows for robustness to face position and pose. They also
integrate facial attention maps that correspond to areas of
the face with active AUs. Their results suggest using these
attention maps can enhance the learning in the network, at
specific layers. Romero et al. [19] proposed a Convolutional
Neural Network (CNN) to address multi-view AU detection.
In their approach they explicitly model temporal information
using optical flow, as well as predicting the overall view
of a sequence before detecting the AUs. By first predicting
the view, their cascaded approach evaluates temporal AU
networks trained for the specific view. The Facial Expression
Recognition and Analysis challenge (FERA) [21]-[23] also
focused on the detection of AUs. This challenge was designed
to address the challenge of a common evaluation protocol for
AU detection.

Girard et al. [9] conducted an investigation to determine
how much training data is needed for AU detection. They
investigated 80 subjects, and more than 350,000 frames of data
using SIFT features. Their results suggest that variation in the
total number of subjects is an important factor in increasing
AU detection accuracies, as they achieved their max accuracy
from a large number of subjects. Ertugrul et al. [7] investigated
the efficacy of cross-domain AU detection. To do this, they
reviewed state-of-the-art literature and conducted experiments
using both shallow and deep approaches, to address some of
the limitations of cross-domain detection. Their results suggest
that more varied domains, as well as deep learning can increase
generalizability, however, more improvement is needed before
applying AU classifiers across different domains. In this paper,
we also review state-of-the-art literature in AU detection,
however, our focus here is not on cross-domain detection but
within-domain. Specifically, we focus on how the number of
active AUs and AU patterns (i.e multiple active AUs) impact
the detection accuracies. Considering this, the contribution of
our work is 3-fold, and can be summarized as follows:

1) We review state-of-the-art literature and give an in-depth
analysis on the impact of distribution and patterns on
AU detection results. Our results suggest that there is an
explicit trend that strongly impacts the F1-binary scores.

2) We analyze the AU data distribution on 2 state-of-the-art
datasets, namely DISFA [16] and BP4D [29].

3) We conduct multiple experiments, on BP4D, that suggest
using F1 macro/micro, or AUC, as well as a balanced
data distribution can result in more accurate analysis of
AU detection results.
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Fig. 1: AU detection accuracy vs occurrence in BP4D. Bars are the average number of AU occurrences, per frame, across all
subjects. Line graphs are different F1 scores, of methods in the literature, for each AU. NOTE: “Ones” is what happens when
we manually predict all 1’s (i.e. AU is active) for each of the AUs. NOTE: Best viewed in color.
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Fig. 2: AU detection accuracy vs occurrence in DISFA. Bars are the average number of AU occurrences, per frame, across
all subjects. Line graphs are different F1 scores, of methods in the literature, for each AU. NOTE: The scales on the left and
right are different due to the low number of active AUs compared to some of the F1 scores. NOTE: Best viewed in color.

II. DATA DISTRIBUTION

To investigate the impact of the distribution and patterns of
action units (i.e. multiple active action units), we analyzed two
state-of-the-art datasets - DISFA [16], and BP4D [29]. Details
on both of these datasets are given in the following subsection.

A. Datasets

DISFA is a spontaneous dataset designed for studying
facial action intensity. It contains 27 adults (12 women/15
men) that watched a 4-minute video clip that was meant to
elicit spontaneous expressions (i.e. AUs). For our analysis, all
frames from this dataset are used, as all are AU annotated
(130,815 frames). It is important to note that in this dataset,
66,893 frames have no active AUs (=~ 51% of the data). For
this dataset, we investigated the most commonly used AUs
from the literature: 1, 2, 4, 6, 9, 12, 25, 26.

BP4D is a multimodal (e.g. 2D, 3D, AUs) facial expression
dataset which was used in the Facial Expression Recognition

and Analysis challenges in 2015 [21] and 2017 [22] where
the focus, in both challenges, was the detection of occurrence
and intensity of AUs. There are a total of 41 subjects (23
female/18 male) displaying eight dynamic expressions. For our
analysis and experimental design (Section III), we analyze all
AU annotated frames (146,847 frames) from this dataset for
our investigation. In BP4D, there are 10,630 frames that have
no active AUs (= 7.2% of the AU annotated frames). For this
dataset, we also investigated the most commonly used AUs
from the literature: 1, 2, 4, 6, 7, 10, 12, 14, 15, 17, 23, 24.

B. Data Distribution and AU Recognition

We have analyzed state-of-the-art literature regarding their
F1-binary scores from AU detection experiments on BP4D and
DISFA. As can be seen in Figs. 1 and 2, the occurrence of
AUs in both datasets are imbalanced. For example, in BP4D,
AU 10 has an average occurrence of 0.62, while AU 2 has an
average AU occurrence of 0.18. There is a direct correlation
between these occurrences and their Fl-binary scores. AU
10 is one of the highest occurring AUs and also one of



TABLE I: Correlation between F1-binary scores and AU
distribution. NOTE: high correlation suggests the FI-binary
scores explicitly follow the data distribution trend.

Correlation
Method BPAD | DISFA
LSTM [5] 0.680 -
LSVM [13] 0.957 0.347
DAM [6] 0.922 -
MDA [20] 0.948
GFK [10] 0.951
iCPM [28] 0.967
JPML [30] 0.869 -
DRML [31] 0.949 0.844
FVGG [13] 0.890 0.785
E-Net [11] 0.944 0.919
EAC [11] 0.953 0.472
ROI [13] 0.966 0.773
R-T1 [13] 0.931 0.816
R-T2 [13] 0.970 -
APL [31] - 0.5098
Average 0.921 0.683

the highest Fl-binary scores across the literature, with an
average Fl-binary score of 0.75. Similarly, AU 2 is one of
the lowest occurring AU and one of the lowest Fl-binary
scores across the literature, with an average F1-binary score of
0.36. Considering this, our analysis shows that current state-
of-the-art results, in AU detection, follow an explicit trend
which is the distribution of the AUs (i.e. the number of active
AUs explicitly impacts the Fl-binary score of the detection
method). To further illustrate this trend, we also calculated
the F1-binary score if we were to manually predict all 1’s, for
all frames (i.e. all AUs are active). As can be seen in Fig. 1,
the general trend that the F1-binary scores, for all methods in
BP4D, follow is the same as predicting all 1’s.

The general trend that F1-binary scores follow can visually
be seen in Figs. 1 and 2. To statistically analyze this trend, we
calculated the correlation between the data distribution and F1-
binary scores of the methods shown in Figs. 1 and 2. We define
X=X -Y)

(x = X)2(y — y)?
are the averages of the distribution and the F1-binary scores,
respectively. For BP4D and DISFA, the average correlations
are 0.921 and 0.683, respectively. These results suggest that
there is high correlation between the data distribution and the
reported F1-binary scores for AU detection (Table I). Although
there is a general trend of AU occurrence versus Fl-binary
accuracy, it is important to note there are some anomalies in
the F1-binary scores for some AUs and methods. For example,
on BP4D, Chu et al [5] use high intensity AUs along with
a 3-class problem (i.e. +1/-1, and 0). In DISFA, some of
the experiments train on BP4D and test on DISFA, which
is a common approach for testing on this dataset, due to the
imbalance of active versus inactive AUs. This can explain,
in part, some of the lower correlations in BP4D and DISFA
(Table I: [5], [11], [12]).

Along with the correlation between the data distribution
and F1-binary scores, we also calculated the variance, var =

correlation as corr =

, where X and y

TABLE II: Variance and standard deviation of F1-binary
scores, for each individual AU, between all investigated
methods (Figs. 1, 2 and Table I).

BP4D DISFA

AU Var S Var S
AU 1 0.004 0.060 0.020 0.141
AU 2 0.007 0.083 0.007 0.083
AU 4 0.014 0.118 0.032 0.179
AU 6 0.010 0.099 0.031 0.175
AU 7 0.005 0.073 - -
AU 9 - - 0.064 0.253
AU 10 0.011 0.106 - -
AU 12 0.006 0.080 0.027 0.165
AU 14 0.009 0.096 - -
AU 15 0.011 0.103 -
AU 17 0.004 0.065 -
AU 23 0.011 0.104 -
AU 24 0.015 0.122 - -
AU 25 - - 0.113 0.337
AU 26 - - 0.012 0.109
Average 0.0089 0.0923 0.0383 0.180

> (x —%)?
W, and standard deviation, std = \/var, of the F1-

binary scores between each of the methods detailed in Figs.
1 and 2. As shown in Table II, there is a small amount of
variance between each of the methods across all studied AUs.
In BP4D, the average variance is 0.0089 (std of 0.0923), and
in DISFA the average variance is 0.0383 (std of 0.180). This
suggests that the investigated F1-binary scores are within a
small accuracy range, while following the data distribution
trend. While the general variance and standard deviations are
low, there are some outliers, especially in DISFA. For example,
AU 9 have a variance of 0.064 and standard deviation of 0.253.
This can also be visually seen in Fig. 2, with the Fl-binary
score of Li et al. [11]. As previously detailed, this can partially
be explained from training on BP4D and testing on DISFA.

C. AU Patterns

From the AUs we investigated, for each dataset, we are
interested in which AU patterns occur most often. We define
a pattern as the active and inactive AUs for each frame. To
investigate this, we looked at how many individual patterns
exist, as well as the total frame count of each pattern (i.e.
how many frames of data have that pattern). There are 1692
different patterns in BP4D and 265 in DISFA, that contain the
investigated AUs for each dataset respectively. Tables III and
IV show the 5 patterns with the highest, and the 2 patterns with
the lowest frame counts in BP4D and DISFA, respectively.

As can be seen in Table III, there are some patterns that only
appear 1 time across all frames, while there are patterns that
occur over 6000 times across all frames. While there are less
overall patterns in DISFA, there is still a large imbalance in the
active and inactive AUs per frame. Similarly to BP4D, there
are patterns that only occur in one frame, while there are many
patterns that occur over 5000 times, including one pattern that
occurs in 10,762 frames. In both datasets the pattern with the
largest frame count is all 0’s (i.e. no active AUs for that frame).
This difference in the number of patterns contributes, at least
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Fig. 3: Comparison of range of frame counts vs. percentage of patterns in that range for BP4D and DISFA.

TABLE III: AU patterns (active and inactive AUs per frame)
from BP4D, along with total number of frames with that
pattern. NOTE: top 5 rows are patterns with highest counts;
bottom 2 rows are patterns with lowest counts.

Frame Count Pattern
T 721476777 10] 12] 14] 15] 17] 23] 24

10630 ojojofojOoOflO]O|O][O|O][O]|O
8402 ojojof1]1 1 1 I1{0O[O0O|O0]O
6883 ojoj]of1]1 1 Ifo[O0O|O]O]O
3571 ojoj1fo{OlO]O|O[O|O][O]|O
1814 0OjO0jO0O[O0O]O0]|1 Ifo0[O0O|O]O]O

1 ojo]1]0]1 rfofo|l1[T1[1]O

1 T{1{jo|1]1]1|1]O0|1[1|1]T1

partially, to the imbalance of AUs in these datasets. It is also
important to note that for both datasets, there is a similar trend
in the percentage of patterns that exist in a range of frame
counts (Fig. 3). For example, >72% of the patterns in BP4D
and >65% of the patterns in DISFA occur <50 times in both
datasets. On the other hand, <0.2% of the patterns in BP4D
and <2% of the patterns in DISFA occur >5000 times.

III. EXPERIMENTS AND RESULTS

To further investigate the impact of data distribution and
patterns on AU detection, we conducted in-depth experiments
on BP4D. We chose BP4D for our experiments as DISFA
contains a large imbalance of active versus inactive AUs [12].
We evaluated the impact of two different convolutional neural
networks (CNN) for this investigation (e.g. shallower versus
deeper CNNGs). First, we implemented the CNN as detailed by
Ertugral et al. [7] for our shallower CNN, as this contains three
convolutional layers and two fully connected. For our deeper
CNN, we used a network which had two CNN layers with
filter size of 8 and 16 followed by max pool layers, followed
by two more CNN layers, with filter sizes of 16 and 20;
another max pool layer and batch normalization. All CNNs
used had a kernel of (3,3). There were three dense layers,
before the output layer, with 4096, 4096 and 512 neurons
respectively, relu activation function was used and dropout
of 0.4. In addition to these two networks, we also had a
control group called ’Ones’, in which we detected all AUs
as active in all the frames. This control group has a trend that

TABLE IV: AU patterns (active and inactive AUs per frame)
from DISFA, along with total number of frames with that
pattern. NOTE: top 5 rows are patterns with highest counts;
bottom 2 rows are patterns with lowest counts.

Pattern
Frame Count | ——— =T 9 T 127 257 26
66893 0T o000 [0 [0[0 070
10762 0oTolol0 [0 [0 170
7112 0T o0 T [0 [0 [0 070
5322 oTololo0 [0 [T 1710
5148 ol oo [T [0 [T 1710
T olTofolo [0 [T [T]0
T 0To0lo0 [0 [0 [0 [T ]0

largely follows the data distribution, and is used as a basis for
comparisons for our shallower [7] and deeper networks.

To investigate the impact of the AU patterns on detection
accuracy, we calculated the Fl-binary, Fl-micro, Fl-macro,
and Area Under the Curve (AUC) scores. F1 score is defined
as F1 = 2% ﬁ'uePositiveszJ}zZ;rsu:;?ss;gC/ee;FalseNegatives [2] and AUC
is defined as the area under the graph between True positive
rate V/S False positive rate. Fl-binary is F1 score for the
positive class and does not consider the negative class where
as Fl-macro is the simple average of F1 scores of all classes.
Fl-micro is the weighted average of the F1 score of all the
classes, with more weight being given to the class which has
a higher occurrence in the data. To facilitate our investigation,
we conducted two experiments. First, using the entire dataset,
we detected multiple AUs (i.e. the entire sequence/pattern). For
this experiment, we used all AU-labeled frames from BP4D,
and we refer to this as experiment I in rest of paper. Secondly,
we detected individual AUs by balancing the data to have
an equal number of frames where the AU was active and
inactive. We refer to this as experiment 2 in the rest of the
paper, and was done to test what impact balancing the data
and removing the patterns has on AU the detection accuracy.
Both experiments were subject-independent (i.e. same subject
does not appear in training and testing), and the subjects in
the each fold were fixed so that both experiments trained and
tested the same subjects and images. We detected 12 AUs
using three-fold cross-validation.
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Fig. 4: Comparisons of different accuracy metrics on multiple networks (experiment 1I).

TABLE V: Correlation between investigated metrics and data
distribution for experiment 1.

Metric Correlation
Shallower | Deeper Ones
F1-binary 0.9758 0.9489 0.9912
F1-macro 0.7570 0.6349 0.9961
AUC 0.5795 0.6406 N/A
F1-micro -0.2656 -0.3118 0.9913

A. Experiment 1 (Multi-AU detection)

When using the *Ones’ control group as a baseline, it can
be seen that there is a high correlation between the data
distribution and F1-binary, macro, and micro scores (Table
V). There is an average correlation, with the data distribution,
of .9928 across the three metrics. While the accuracies vary
between the different metrics, it can be seen that the trend is
similar (Fig. 4). For the control group, the AUC correlation is
N/A as a score of 0.5 was obtained for each AU (Fig. 4d).

As can be seen in Fig. 4a, when comparing the F1-binary
scores of the tested shallower [7] and deeper networks to
the control group there is little difference. It can be seen
that all three of them follow a similar trend, which is the
distribution of the data (distribution can be seen in Fig. 1).
This suggests that the F1-binary score may not be an accurate
metric to distinguish between correct detection and guessing
(i.e. “guessing” all AUs as ones/active). This can be explained,
in part, since the Fl-binary score only looks at the positive
classes [2]. This can also be seen in Table V (first row), as
there is a high correlation between the F1-binary score of both
networks and the data distribution. We also calculated the
correlation across each AU of both networks to the control
group (i.e. how correlated are the Fl-binary accuracies for
each AU). This resulted in correlations of 0.98 and 0.94 for the

shallower [7] and deeper networks, showing both give similar
results to detecting all AUs as active.

We also looked at using F1-micro and macro as the metrics
for AU detection accuracy. Fl-micro does not follow the
control group trend. It has a correlation of -0.29 and -0.31
for the shallower [7] and deeper networks with the control
group (Fig. 4b). It also had a low negative correlation with
the data distribution for both networks (Table V). This can be
explained by Fl-micro more heavily weighting the negative
class for low occurring AUs. Fl-macro also does not follow
the control group trend (Fig. 4c). Although Fl-macro is more
correlated compared to F1-micro, with correlations of 0.74 and
0.62 for the shallower and deep networks, it is less correlated
compared to Fl-binary (Table V).

The final metric we looked at, for AU detection accuracy,
was AUC. This metric has a lower correlation, with the data
distribution, compared to Fl-macro. It can also be seen that
it does not follow the data distribution trend (Fig. 4d). Again,
as AUC for this experiment was 0.5, we were unable to
calculate the correlation between the control group and the
shallower and deeper networks. It is also important to note
that the correlations between the control group and F1-binary,
macro, and micro closely resemble the correlation with the
data distribution. This is due to the high correlation of the
control group with the data (i.e. correlations are close to one).

B. Experiment 2 (Single-AU Detection)

To validate that data distribution and patterns have an
impact on Fl-binary scores we used our balanced data and
trained separate networks for each individual AU (i.e. single
AU detection). Similar to experiment I, we calculated the
correlations between the Fl1-binary, macro, micro and AUC
scores compared to the data distribution for the shallower
[7] and deeper networks (Table VI). In experiment I, the
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Fig. 5: Comparisons of different accuracy metrics on different networks (experiment 2). NOTE: Best viewed in color - (d) has
2 overlapping lines as the deeper network and the control group has an AUC score of 0.5 for all AUs.

TABLE VI: Correlation between Metric and data distribution
(on balanced dataset and independent AU). NOTE: Deeper
network AUC N/A due to score of 0.5 for all AUs.

Metric Correlation
Shallower | Deeper
F1-binary 0.8783 0.1121
Fl-macro 0.6869 -0.4281
AUC 0.5840 N/A
F1-micro 0.6290 -0.4679

correlations with the data distribution, for each metric, across
the two network architectures was similar (e.g. Fl-binary
correlation of 0.9758 and 0.9489 for the shallower and deeper
networks, respectively). Conversely, for experiment 2, the
correlations, between the two networks, are not similar. For
example, the correlation between Fl-micro for the shallower
network is 0.6290, while the deeper network has a correlation
of -0.4679. Although the correlations differ between the two
networks, in general F1-binary follows the data distribution,
while the others do not (Fig. 5). Similar to experiment 1, the
AUC for our control group was 0.5 for all AUs, however, the
AUC for the deeper network was also 0.5 for all AUs (5d). This
can be explained, in part, by the general performance of the
deeper network as seen in Fig. 5. Each metric, for the deeper
network, generally performed poorly which could indicate that
it had difficulty learning individual AUs, resulting in an AUC
of 0.5 (i.e. similar to a random guess of one for all frames).

For experiment 2, we do not claim this as a solution to
the problems encountered when using Fl-binary score as
the accuracy metric for AU detection. This experiment was
conducted to validate that AU patterns, as well as class
imbalance contributes to the Fl-binary scores following the
data distribution trend. While the overall AU detection scores

are lower for this experiment, the score was not the goal,
but showing that the trend can be broken when patterns are
removed and the classes are balanced. There are two major
concerns with this experimental design being a solution. First,
in a real-world setting balancing AUs is a difficult problem as
many AUs are active at the same time as others (i.e. patterns).
This causes balancing issues as balancing one AU can cause
an imbalance in another AU. Second, and complimentary to
the first concern, our results suggest that higher AU scores can
be achieved with a multi-AU detection approach, especially as
seen in our deeper network. These results validate other work
that has shown the same thing [13].

IV. CONCLUSION

We have presented results that suggest data distribution
and AU patterns (i.e. multiple active AUs), directly impact
Fl-binary scores causing a trend across multiple databases.
We have reviewed state-of-the-art literature showing this trend
exists across multiple works that make use of the Fl-binary
metric. We have also shown that this trend can be broken by
removing the patterns (i.e. single AU detection), as well as
balancing the AUs. Although this can help break the trend,
we do not recommend it as a possible solution due to lower
accuracies across multiple metrics, as well as the difficulty of
balancing AUs in a real-world setting.

Our results suggest that different metrics besides for F1-
binary could be a potential solution to breaking this trend.
Considering this, we have detailed results of Fl-micro, F1-
macro, and AUC metrics. We conclude that the inclusion of
all of these metrics for AU detection can give a better analysis
and more confidence in the accuracy of results.
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