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ABSTRACT 

 

To fully understand the complexities of human emotion, the 

integration of multiple physical features from different 

modalities can be advantageous. Considering this, we present 

an approach to emotion recognition using hand-crafted 

features that consist of 3D facial data, action units, and 

physiological data. We analyze each modality independently, 

as well as the combination of each for recognizing human 

emotion. This analysis includes the use of principal 

component analysis to determine which dimensions of the 

feature vector are most important for emotion recognition. 

We show that our proposed features can be used to accurately 

recognize emotion and that our proposed approach 

outperforms current state of the art on the BP4D+ dataset. 

 

Index Terms— emotion recognition, 3D face, 

multimodal, action units, physiological data 

 

1. INTRODUCTION 

 

Recognizing emotion is considered one of the most 

important parts of human intelligence [22] and it has 

applications in fields as varied as entertainment, 

transportation, medicine and health, and psychology. Due to 

this, there has been a great deal of research into human 

emotion recognition (HER) in the past decades, where many 

important advances have been made. This is due in part 

because of the availability of large, varied, and challenging 

datasets [4], [10], [18], [20], [25], [27], [29], [33], [36], [37].  

There is a large and varied body of work into facial 

expression recognition. Using a Spatio-Temporal Hidden 

Markov Model (HMM), the intra and inter frame information 

can be used for this task [30]. It has been shown that using a 

random forest [1] along with a Deformation Vector Field [7], 

the local deformations of the face over time can be used to 

accurately classify expressions. Facial expressions have also 

been successfully classified using a Support Vector Machine 

(SVM) using a radial basis function (RBF) kernel with 

geometrical coordinates, as well as the normal of the 

coordinates [12].  

Deep learning has shown recent success in expression 

recognition. Using a Boosted Deep Belief Network, Liu et al. 

[19] trained feature learning, selection, and classifier 

construction iteratively in a unified loopy framework which 

showed an increase in the classification accuracy. Motivated 

by the Generative Adversarial Model [14], a De-expression 

Residue Learning [35] approach was proposed which can 

generate a corresponding neutral expression given an 

arbitrary facial expression from an image. Yang et al. [34] 

proposed regenerating expression from input facial images. 

By using a conditional GAN [21], they developed an identity 

adaptive feature space that can handle variations in subjects. 

Although deep learning has shown great promise, the 

majority of works in expression analysis have utilized a 

single modality, namely 2D images.  

Facial expression recognition is a popular approach to 

recognizing emotion, however, there is also a varied body of 

work that makes use of multimodal data for emotion 

recognition. Soleymani et al. [28] incorporated 

electroencephalogram, pupillary response, and gaze distance 

information from 20 videos. They used this data along with 

an SVM to classify scores of arousal and valence for 24 

participants. Kessous also showed an increase of more than 

10% when using a multimodal approach [17]. They used a 

Bayesian classifier, and fused facial expression with speech 

data that consisted of multiple languages including Greek, 

French, German, and Italian.  

Motivated by these works we propose a multimodal 

approach to emotion recognition using 3D facial data, 

physiological data, and action units. We give a detailed 

analysis of each modality both independently and combined 

at the feature level (unimodal vs. multimodal), providing 

details about which modalities have the greatest impact for 

positively influencing emotion recognition studies. We test 

the efficacy of our approach on the BP4D+ [41] database, 

outperforming current state of the art. 

 

2. DATA SELECTION AND FEATURE 

EXTRACTION 

 

We propose to use 3D facial data (landmarks), action units 

and physiological data. We chose these 3 modalities based on 

their complementary nature. First, given movement, and the 

shape of the face changes (3D landmarks), we can also 

assume that there will be a change in the occurrence of action 

units [9]. We have also chosen the complementary modality, 

physiological data, as facial expressions can be faked. It has 

been observed that people smile during negative emotional 



experiences [8]. Considering this, Physiological data can 

complement the other 2 modalities for recognizing emotion. 

To verify the efficacy of our proposed multimodal 

approach, a suitably large corpus of emotion data is needed 

that contains 3D facial data, action units, and physiological 

data. For our experiments we have chosen the BP4D+ 

multimodal spontaneous emotion corpus [41]. In total, there 

are over 1.5 million frames of multimodal available in the 

BP4D+. For this study we use 192,452 frames of multimodal 

data from all 140 subjects. This subset of data contains 4 

target emotions that are happiness, embarrassment, fear, and 

pain. We are using this subset, as it is the largest available, in 

BP4D+, that contains all three modalities investigated here. 

 

2.1. 3d facial data 

For our study we used 83 3D facial landmarks (same as seen 

in BP4D+) to represent the face. Each of the landmarks were 

detected using a shape index-based statistical shape model 

(SI-SSM) [2], that creates shape index-based patches from 

global and local features of the face. These global and local 

features are concatenated into one model, which is then used 

along with a cross-correlation matching technique to match 

the training data to an input mesh model. Examples of 

detected 3D facial landmarks can be seen in Fig. 1. For our 

3D facial data feature vector, we directly use the coordinates 

of the 3D tracked facial landmarks as they can accurately 

represent the induced emotion that can be seen in the entire 

3D model, which contains approximately 30k-50k vertices; 

where our reduced feature vector contains 249 features (83 – 

3D coordinates). Using this reduced feature space (relative to 

the entire 3D mesh) allows for lower dimensional data, 

without sacrificing any recognition accuracy. 

 

 

Figure 1.3D facial landmarks on corresponding 3D mesh model for 

our targeted emotions of happiness, embarrassment, pain, and fear 

from the BP4D+ [41]. 

 
2.2. Action units 

For each of the 4 tasks that have action units coding, a total 

of 35 action units (AUs) were coded by five different expert 

FACS coders. For each task of all 140 subjects approximately 

20 seconds of the most expressive part of the sequence was 

annotated, giving us our 192,452 frames of multimodal data 

that we use for our study. For our AU feature vector, we 

include the occurrence of all 34 annotated AUs for each frame 

where 1 corresponds to the AU being present and 0 

corresponds to the AU not being present in the current frame. 

There are some instances in the BP4D+ where the AU 

occurrence is listed as 9, which is referred to as unknown. For 

our experiments, 9 is treated as a 0 (i.e. not present).  

 

2.3. Physiological data 

For each subject and task, the BP4D+ contains 8 separate 

measurements of physiological data derived from blood 

pressure (BP), heart rate (HR), respiration (RESP), and skin 

conductivity (EDA). All physiological data was sampled at 

1000 Hz which required us to synchronize with the available 

3D facial data and corresponding action units to have 

accurate readings for each frame of data.   

To synchronize this, we first divide the total number of 

frames of physiological data by the total number of frames of 

3D facial data for that task (average sync value). We then use 

the average value over the average sync value as our new 

frame. For example, given a task with 1000 frames of 3D 

facial data, along with 40,000 frames of diastolic BP we 

would have 
40,000

1000
= 40, resulting in us taking the average 

diastolic BP for every 40 frames. Calculating the mentioned 

average over all 40,000 frames, results in 1000 frames of 

diastolic BP matching to the 1000 frames of corresponding 

3D facial data. In this same task, there are 400 frames that 

include both 3D facial landmarks and AUs (frames labeled 

with task, subject, and frame number). We then use the 

corresponding frame number to extract that exact index from 

the calculated diastolic BP averages. This gives us our 

resulting 400 frames of synchronized 3D facial data, 

physiological data, and action units. For our physiological 

feature vector, we take the average value of each frame over 

all eight of the data types (i.e. fuse the signals). 

 

3. EXPERIMENTS AND ANALYSIS 

 

3.1. Analysis of features for emotion recognition 

Along with the emotion recognition results, we are also 

interested in analyzing which modality and features are most 

important for our 4 target emotions. To do this we used 

principal component analysis (PCA) for feature selection 

keeping 95% of the original variance. We did this for each of 

our unimodal feature vectors for all the training data, as well 

as each individual emotion. This was done to analyze which 

features are important for emotion recognition in a general 

sense, and for each targeted emotion resulting in a total of 15 

total rankings (3 feature vectors for each: happy, 

embarrassment, pain, fear, and all emotions). The features 

were then ranked based on highest eigenvalue. 

Action Units. The top selected action units included the 

lips, cheeks, nose, and eye/eyebrow regions. Across each of 

the target emotions, along with all combined emotions the 

selected AUs were similar. The difference being their 

rankings change across different emotion (e.g. AU12 was 

ranked first for happy, while AU12 was ranked second for 



embarrassed). Table 1, second column, shows the top 5 

selected AUs. As can be seen here the top AUs for ‘Happy’ 

are 12, 6, 11, and 7. When considering the Emotion Facial 

Action Coding System [13], which only looks at emotion-

related facial action, ‘Happy’, is 6+12. This shows a 

correlation between the PCA rankings and the action units 

associated with the emotion. We also calculated the 

normalized AU distribution across each target emotion. This 

showed that while each emotion had similar occurring action 

units, they varied in distribution, which contributes 

complimentary information to the other modalities. This can 

explain the increase in emotion recognition accuracy when a 

multimodal approach is used (Table 3). 

Physiological Data. Most of the top selected features for 

physiological data were variations on blood pressure (e.g. 

diastolic and systolic). Pulse rate was also selected as a top 

feature for each of the target emotions, however, when all 

emotions were included in the training data, pulse rate was 

replaced by EDA. This suggests that skin conductivity is 

important for recognizing multiple emotions. It is interesting 

to note that for each of the 4 target emotions, not only were 

the top selected features the same, they were also ranked in 

the same order. Although each emotion had the same selected 

physiological data, they all had large variations in the data 

between them. This variance in data allows for a high level of 

recognition accuracy( Table 2). Table 1, third column, show 

the top 5 selected physiological signals. 

3D Facial Data. When analyzing the 3D facial data, each 

of the target emotions show variance in the regions of the face 

that were selected for the top features. For example, happy 

targeted the right eye and eyebrow, embarrassed focused on 

the left side of the face, including the eyebrow and contour of 

the face, and pain was across the right eyebrow, nose, and left 

eyebrow. These regions of the face are also consistent with 

the AUs selected as the top features (e.g. mouth, face, 

eyes/eyebrows). Table 1, last column, details the top 5 

selected 3D facial landmarks and Fig. 2 shows an example of 

the corresponding features (from table 1) for each of the 4 

target emotions, on corresponding 3D mesh models. It can be 

seen, in Fig. 2, that emotional variance is conveyed in 

different 3D regions of the face for each of the target 

emotions. 

 

 

Figure 2.  Top 5 selected 3D facial features across the 4 emotions. 

Table 1. PCA rankings for each feature for each individual emotion 

along with all 4 target emotions, shown in ranked order. NOTE: Fig. 

2 shows a visual representation of the landmarks for the 4 emotions.  

Emotion Action Units Phys 
3D Facial 

Landmarks 

Happy 

Lip corner puller (12), 
Cheek raiser (6), 
Upper lip raiser (10), 
Nasolabial Deepener (11), 
Lid Tightener (7) 

Mean BP, 
Diastolic 
BP, 
Systolic BP, 
Raw BP, 
Pulse rate 

26, 8, 7, 3, 
25 

Embarrassed 

Cheek raiser (6), 
Lip corner puller (12), 
Upper lip raiser (10), 
Lid Tightener (7), 
Nasolabial Deepener (11) 

Mean BP, 
Diastolic 
BP, 
Systolic BP, 
Raw BP, 
Pulse rate 

83, 16, 16, 
14, 82 

Pain 

Lip corner puller (12), 
Cheek raiser (6), 
Upper lip raiser (10), 
Nasolabial Deepener (11), 
Lid Tightener (7) 

Mean BP, 
Diastolic 
BP, 
Systolic, 
Raw BP, 
Pulse rate 

1, 48, 37, 
11, 2 

Fear 

Upper lip raiser (10), 
Cheek raiser (6), 
Lid Tightener (7), 
Lip corner puller (12), 
Nasolabial Deepener (11) 

Mean BP, 
Diastolic 
BP, 
Systolic BP, 
Raw BP, 
Pulse rate 

5, 4, 6, 7, 3 

All 

Lip corner puller (12), 
Upper lip raiser (10), 
Cheek raiser (6),  
Lid Tightener (7), 
Nasolabial Deepener (11) 

Mean BP, 
Diastolic 
BP, 
Systolic BP, 
Raw BP, 
EDA 

12, 13, 19, 
18, 11 

 

3.2. Emotion recognition results 

To conduct our emotion recognition experiments, we created 

a feature vector for each unimodal and multimodal 

configuration (Tables 2 and 3). We then used each of these 

feature vectors to train a random forest  [1] for recognizing 

the four target emotions. Random forests have successfully 

been used in a wide variety of classification tasks such as 

classifying ecological data [5], real-time hand gesture 

recognition [42], and head pose estimation [11], which makes 

them a natural fit for our analysis. 

Unimodal vs. Multimodal Emotion Recognition. We 

used 10-fold cross validation for each of our experiments. 

The results for unimodal and multimodal emotion recognition 

can be seen in Tables 2 and 3 respectively. 

 

Table 2. Unimodal emotion recognition from BP4D+. 

 3D AU Phys 

Accuracy 99.29% 61.94% 99.94% 

Recall 98.8% 60.35% 99.95% 

Precision 99.33% 61% 99.95% 



Table 3. Multimodal emotion recognition from BP4D+. 

 3D/AU AU/Phys 3D/Phys 3D/AU/Phys 

Accuracy 99.53% 99.95% 99.76% 99.83% 

Recall 99.58% 99.95% 99.75% 99.83% 

Precision 99.52% 99.95% 99.75% 99.85% 

 

When physiological data was used, recognition accuracy 

was highest for both unimodal and multimodal approaches, 

achieving an accuracy of 99.94% for the 4 target emotions, 

with a unimodal approach. This result is intuitive as 

physiological signals are closely tied to human emotion [15], 

[16]. For our multimodal feature vectors, when AUs units 

were combined with physiological data we achieved our 

highest recognition accuracy of 99.95%. This also agrees 

with the literature that the fusion of multimodal data, 

including action units, can provide complimentary 

information and increase recognition accuracy [3]. Although 

emotion recognition from AUs shows promising results, 

especially when fused with other modalities, they exhibit the 

lowest classification rate of the unimodal feature vectors with 

a recognition accuracy of 61.94%. The confusion matrices for 

AUs, physiological data, and AUs combined with 

physiological data are shown in table 4, 5, and 6 respectively 

(The numbers in each confusion matrix are the total number 

of frames recognized). 

 
Table 4. Confusion matrix of emotion recognition using action units.  

 Happy Embarrassment Fear Pain 

Happy 32511 7730 3373 7917 

Embarrassment 17561 26038 3238 5282 

Fear 8773 5206 14652 8163 

Pain 1983 2334 1685 46006 

 

Table 5. Confusion matrix of emotion recognition using phys. data.  

 Happy Embarrassment Fear Pain 

Happy 51512 10 5 4 

Embarrassment 21 52080 4 14 

Fear 4 7 36780 3 

Pain 22 13 6 51967 

 

Table 6. Confusion matrix of multimodal emotion recognition using 

action units and physiological data.  

 Happy Embarrassment Fear Pain 

Happy 51504 21 0 6 

Embarrassment 10 52100 3 6 

Fear 14 16 36758 6 

Pain 3 9 1 51995 

 
Combining multimodal data has been found to increase 

emotion recognition including pain in infants [38]. Our 

results show similar results with pain as well, increasing from 

99.92% with physiological data to 99.98% when AUs were 

fused with physiological data. It is interesting to note, that 

while the overall recognition accuracy was higher when AUs 

were combined with physiological data, the recognition rates 

for both happy and fear decreased to 99.94% and 99.90% 

respectively. This can be attributed to some redundant 

information between the AU occurrences. 

3.3. Comparisons to state of the art 

We also compared our results the current state of the art. To 

the best of our knowledge, we are the first group to look at 

combining the modalities, detailed here, from the BP4D+. 

Due to the lack of works on the BP4D+, we also show results 

from using 2D images, which was done by Yang et al. [35]. 

Zhang et al. [41] conducted separate experiments on 3D 

facial, thermal, and physiological data. Neither group studied 

the combination of multiple modalities as proposed here. As 

it can be seen in Table 7, our proposed method outperforms 

the other methods on each modality that was used (in this 

paper), including the overall highest accuracy on the BP4D+.  

 
Table 7. Comparison to state of the art on BP4D+ [41]. Note: 

numbers shown are recognition accuracy. 

 
Ther
mal 

2D AU 3D Phys 
3D 
AU 

3D 
Phys 

Phys 
AU 

3D 
Phys 
AU 

Best 

Proposed 
method 

NA NA 61.9 99.3 99.9 99.5 99.8 99.9 99.8 99.9 

Yang et 
al. [35] 

NA 81.4 NA NA NA NA NA NA NA 81.4 

Zhang et 
al. [41] 

91 NA NA 74.8 60.5 NA NA NA NA 91 

 

It is also important to note the difference in using 

physiological data compared to Zhang et al [41]. We obtained 

an accuracy of 99.94% compared to 60.5% with their method. 

This large difference in accuracy can be attributed to the 

method used with physiological data. In our work we propose 

the fusion of all 8 signals (see Section 2.3), from the BP4D+, 

with a random forest. Similarly, Zhang et al. used an RBF 

SVM, however, they used non-fused, hand-crafted features 

compared to our fusion approach. Our results suggest a 

fusion-based approach, with physiological data, can lead to 

an increase of overall emotion recognition accuracy. 

 

4. DISCUSSION 

 

We have presented an analysis of 3D facial data, action units 

and physiological data, in both a unimodal and multimodal 

capacity, for emotion recognition on four target emotions. 

Our analysis has shown that 3D facial data shows variations 

in facial regions allowing for accurate emotion recognition. 

We have also shown that physiological data can be used for 

emotion recognition due to the changes across emotion. The 

occurrence of action units shows differences in distribution 

over 35 AUs across the four-target emotions, which allows 

for complimentary information to be used when fusing the 

AUs with other modalities at the feature level.  
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