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Abstract—In this paper, we propose a multimodal approach to
emotion recognition using physiological signals by showing how
these signals can be combined and used to accurately identify a
wide range of emotions such as happiness, sadness, and pain.
The proposed approach combines multiple signal types such
as blood pressure, respiration, and pulse rate into one feature
vector representation of emotion. Using this feature vector, we
train a deep convolutional neural network to recognize emotions
from 2 state-of-the-art datasets, namely DEAP and BP4D+. On
BP4D+, we achieve an average, subject independent, emotion
recognition accuracy of 94% for 10 emotions. We also detail
subject-specific experiments, as well as gender specific models of
emotion. On DEAP, we achieve 86.09%, 90.61%, 90.48%, and
90.95% for valence, arousal, liking, and dominance respectively,
for single-trial classification. We also detail state-of-the-art results
on BP4D+ and DEAP.

Index Terms—Emotion recognition, deep learning, physiologi-
cal data, multimodal

I. INTRODUCTION

Emotional state is mental composition which shows our
reaction to an experience. It is an integral part of human
communication and behavior [1]. Recognizing emotions using
machines has important roles in human-computer interac-
tion, including applications in video games [2], assessment
of multimedia technology, recommendations for multimedia
content [3], pain recognition [4], and classification of Austism
Spectrum Disorder [5]. While recognizing others emotions,
we generally look at their facial expressions, speech or body
language, however, these features can be misguiding. Facial
expression, voice, and body languages can be faked. Faces
can be occluded, and facial expression can be contradictory
which can make feature identification difficult. For example, it
has been observed that people smile during negative emotional
experiences [6]. Considering this, physiological signals such
as heart rate, blood pressure, respiratory signals, and Elec-
troencephalogram (EEG) signals can be important traits for
identifying emotions accurately.

There has been an increase in the works that use physi-
ological data for emotion recognition in recent years. Mert
and Akan [7], investigated empirical mode decomposition
for classification of low/high arousal and valence. They also
looked at the multivariate extension, which they show is useful
for analyzing non-stationary EEG signals. Martinez et al. [8]
combined skin conductance and blood pressure along with
deep neural networks to recognize emotions. The efficiency
of their model was compared with standard feature extraction
and feature selection methods. They showed that their deep
learning approach performed better than standard feature se-
lection algorithms and the method shows more generalization.

Sano et al. [9] used physiological data to measure stress. For 5
days, skin conductance for 18 participants was collected with
wrist sensors, as well as their mobile phone usage including
call, SMS, and location were monitored. A survey was done to
know stress, mood, sleep, tiredness, general health, alcohol or
caffeinated beverage intake and electronics usage. Correlation
analysis was applied to find important features that were used
to classify whether the participant was stressed or not.

A computer-aided diagnosis system was developed to au-
tomate the classification of EEG signals in three categories
- normal, preictal, and seizure [10]. This method achieved
88.67%, 90.00% and 95.00% accuracy respectively. Vijayan et
al. [11] used EEG signals to classify different emotions such as
happiness, fear, and sadness. The experiments were performed
on the DEAP dataset [12], and Shannon Entropy was used for
feature extraction and a multi-class Support Vector Machine
was used for training. The accuracy obtained for classification
was 94.097%. Picard et al. [13] showed variations in physio-
logical signals on a daily basis. They proposed seeding a Fisher
Projection with the results of Sequential Floating, achieving
an accuracy of 81% on 8 emotions. Wagner et al. [14]
combined multiple physiological signals to find the affective
state. A musical induction method was used to ignite real
emotion in subjects for data collection. Electromyogram, elec-
trocardiogram, skin conductivity and respiration signals were
used to classify four musical emotions (positive/high arousal,
negative/high arousal, negative/low arousal, and positive/low
arousal). A feature-based approach was proposed, obtaining a
classification accuracy of 95% for subject-dependent and 70%
for subject-independent experiments.

Motivated by these works we propose a method for emotion
recognition using the combination of physiological signals that
include heart rate, blood pressure, respiration, EDA, and EEG.
We use this data to train a deep convolutional neural network
to recognize a range of emotions. The contributions of this
work are three-fold, and can be summarized as follows:

1) We propose a multimodal approach to recognizing emo-
tion using physiological data and deep convolutional
neural networks.

2) We detail gender-specific models of emotions showing
the difficulty when training and testing across male vs.
female data.

3) We compare the proposed method to state-of-the-art
methods on BP4D+ and DEAP datasets, achieving state-
of-the-art performance.



Fig. 1. Heart rate, respiration rate, and respiration volts from BP4D+, from
subject experiencing a ’Happy’ emotion.

Fig. 2. Fp1 EEG channel from DEAP.

II. DATASETS

BP4D+. BP4D+ [15] is a multimodal spontaneous emo-
tion corpus which includes 8 physiological signals that in-
clude blood pressure, EDA (skin conductance), heart rate and
respiration. The BP4D+ also includes 2D, 3D and thermal
images and videos, facial landmarks and action units. For
our experiments only the physiological data was used. The
huge versatility of gathered data makes BP4D+ one of the
largest databases of this kind. This data was gathered from 140
subjects (58 males and 82 females) from 18 to 66 years of age.
It includes the following 10 emotions: happy, sad, surprise,
startle, skeptical, embarrassed, fear, pain, anger, and disgust.
Each emotion was elicited through tasks such as holding hand
in ice water (pain), and experiencing a smelly odor (disgust).
See Fig. 1 for examples from BP4D+.

DEAP. DEAP [12] is a multimodal dataset based on the
Valence-Arousal emotion model. It contains electroencephalo-
gram (EEG) signals, as well as has sequences of peripheral
signals that include EOG (eye movements), EMG (muscle
movement), GSR, respiration, blood pressure and temperature.
The data was collected from 32 participants (19-37 years age,
50% male and 50% female) watching 40 one-minute long
music videos to elicit emotions. 32 EEG channels based on
the 10-20 system [16] for recording EEG data and 8 channels
for peripheral physiological data were used. These signals
were recorded with a sampling rate of 512 Hz which was
downsampled to 128 Hz after preprocessing. The data was
labeled with arousal, valence, dominance, and liking values
ranging from 1 to 9 showing intensity of each emotional state.
See Fig. 2 for an example of a Fp1 EEG channel from DEAP.

Fig. 3. Feature vector representation for BP4D+. NOTE: 1 frame from each
signal is in each feature vector (i.e. 8 frames for BP4D+).

Fig. 4. Example of Savitzky-Golay smoothing on BP4D+. Left: original
respiration volts signal from subject with ’Happy’ emotion. Right: smoothed
signal from applied filter.

III. PROPOSED METHOD

We propose to use the combination of multiple physiological
signals to train a convolutional neural network for emotion
recognition. In BP4D+ there are large variations in the data,
therefore we first perform preprocessing on the data, specifi-
cally smoothing and scaling. We smooth the data to increase
the signal to noise ratio without deforming the signal, which
makes it easier to see trends in the data. In our experiments
we use the Savitzky-Golay filter [17] as it has been shown
to be more efficient in handling delay alignment and the
transient effect at the start and end of the sequence, compared
to methods such as moving average, and median filters [18].
An example, of an original signal with the smoothed signal
can be seen in Fig. 4. Once the signals are smoothed, we
then scale the data into the range of [0, 1] which helps with
large variations in the different signals. For our experiments
with the DEAP dataset, we did not perform any additional
preprocessing, as this data is already preprocessed for use [12].
Given the smoothed and scaled physiological signals, for each
emotion we then create feature vectors that contain 1 frame
of each of the available signals which are then used to train
a deep neural network. As shown in Fig. 3, for BP4D+, the
feature vector includes (in order) 1 frame of data from diastolic



Fig. 5. Convolutional neural network architecture.

BP, systolic BP, Mean BP, Raw BP, Respiration Volts, Pulse
Rate, and EDA. While this is a simple approach, we will show
(Section V), that it is an effective representation of emotion
outperforming current state of the art on BP4D+ and DEAP.

IV. EXPERIMENTAL DESIGN

For BP4D+, all 140 subjects were used, and each task was
collected over different time periods (i.e. the total number of
frames is different), due to this we had approximately 450,000
feature vectors, for our experiments. For DEAP, all 32 subjects
were used, with each feature vector (in the dataset) having
8064 frames. This resulted in over 10 million feature vectors
for our experiments, validating the efficacy of the proposed
approach for emotion recognition.

A. Deep Neural Network Architecture

In recent years, deep neural networks have proven highly
efficient and have outperformed humans when classifying
modalities such as audio, images, and text [19]. Deep networks
have also successfully been used for classification of medical
images [20], as well as prediction of future sales prices [21].
Motivated by the success of deep neural networks for a range
of tasks and modalities, we train a 9-layer convolutional neural
network (CNN), with the combined physiological signals (Fig.
3), to recognize emotion. The developed CNN uses two sets
of convolutions, activation (ReLU) and max pooling layers.
Dropout is used for regularization to help the model generalize
better by reducing overfitting [22]. The RMSprop optimizer is
used with a learning rate of 0.001. The network was trained
using 150 epochs and a batch size of 32. See Fig. 5 for more
details on the developed CNN architecture.

B. BP4D+ Experimental Design

When evaluating the efficacy of the proposed approach, on
BP4D+, we are interested in answering two broad questions:
(1) How does gender influence emotion recognition with the
proposed method? and (2) Are there large differences in ac-
curacy for subject-dependent vs. subject-independent with the
proposed method? Considering these questions, we conducted
the following experiments.

1) (Experiment 1) We evaluated the proposed method in
a subject-dependent manner. In doing this we created
140 deep models of emotion, one for each subject in
the dataset. For each model, 80% of the subject data
was used to train, and 20% was used to test. Due to

the subject-dependent nature of this experiment, each
model was trained and tested only on the same subject.
This experiment was conducted to be consistent with
the experimental design when using the DEAP dataset
(single-trial classification as detailed in section IV-C).

2) (Experiment 2) We evaluated the proposed method in
a subject-independent manner. One model of emotion
was created that used 80% of the data for training and
20% for testing, where the same subject did not appear
in both training and testing.

3) (Experiment 3) We created gender-specific models of
emotion. In this design, two deep models were created.
For each model, 80% of the females and 80% of the
males were used to train the respective gender-specific
model. In this design, we test the gender-specific model
across both genders (e.g. female model tested on both
male and female subjects). In this experimental design,
the same subject did not appear in both training and
testing data.

C. DEAP Experimental Design

To evaluate the efficacy of the proposed approach on DEAP,
we conducted single-trial classification experiments [12]. All
experiments are done individually on each subject and evalua-
tion is done by calculating mean and standard deviation, across
all subjects, for every set of experiments. We split the data (40
channels as detailed in Section II) into three sets: (1) EEG
(32 channels); (2) peripheral (8 channels); and (3) EEG and
peripheral (40 channels). In total, 12 single-trial classification
experiments were conducted for each subject. One experiment
for each emotion label (valence, arousal, liking, dominance)
resulting in 384 single-trial classification experiments over all
of the DEAP dataset.

V. RESULTS

A. BP4D+

Experiment 1 was conducted in a person-specific manner
resulting in a total of 140 deep models of emotion (one for
each subject). To evaluate the efficacy of these models, we
detail the mean accuracy (across each subject) along with the
standard deviation (Table I). This is done for three groups of
subjects (1) all subjects; (2) female subjects; and (3) male
subjects.

As can be seen in Table I, both male and female data
had a relatively high mean accuracy, with a low standard
deviation. Many of the subjects had accuracy at or near 100%,
although there were a few outliers (Fig. 6). For example,
subject 140 had a lower accuracy at approximately 88%. It
is important to note that subject 140 was a male participant
which can explain, in part, the relatively lower accuracy of
male subjects compared to female subjects (Table I). Overall,
these results detail the expressive power of the proposed
approach for subject-specific emotion recognition. This shows
that the majority of the subjects (both male and female), were
recognized with high accuracy when using subject-specific
models of emotion. Although the results for subject-specific



Fig. 6. BP4D+ subject-specific accuracy distribution.

emotion recognition are encouraging, in a real-wold setting
it cannot be guaranteed that the test subject will appear in
the training data. Considering this, we conducted Experiment
2 where the subject does not appear in the training and
testing data. Experiment 2 was conducted over all emotions
and all subjects (i.e. one deep model of emotion was used).
Across all subjects, we achieved an accuracy of 94%. One
of the questions we wanted to answer with our experiments
on BP4D+, was whether the proposed method can work well
on the same subject, as well as generalize to unseen subjects.
These results are encouraging, as they show a relatively small
difference in the emotion recognition accuracy of 4.89%,
when comparing the average accuracy for subject-dependent
experiments compared to the overall accuracy of the subject-
independent experiment (98.89% vs. 94%).These results detail
the expressive power of the proposed method for recognizing
a range of emotions.

The final experiment conducted on BP4D+, was using gen-
der specific models of emotion. In this experimental design,
we evaluated both male and female models on both genders
(e.g. female model on both male and female testing data).
It is interesting to note that the female model outperformed
the male model for both same and cross-gender testing. The
gender-specific results (Tables I and II) can be explained, in
part, as it has been found that some emotions are more easily
recognized in female subjects compared to male [23].

TABLE I
SUBJECT-SPECIFIC BP4D+ RESULTS.

Data Recognition Accuracy
All participants 98.89% ±1.647

Female 99.09% ±1.212
Male 98.88% ±1.916

TABLE II
EMOTION RECOGNITION ACCURACIES ON GENDER-SPECIFIC MODELS OF

EMOTION.

Training Data (Model) Testing Data Accuracy
Female Female 96.77 %
Male Male 93.60 %

Female Male 15.35 %
Male Female 15.08 %

TABLE III
SINGLE-TRIAL CLASSIFICATION RESULTS FROM DEAP.

Emotion Category EEG Peripheral Both

Valence Mean: 60.21%
±6.306

Mean: 86.31%
±6.186

Mean: 86.09%
±5.367

Arousal Mean: 65.03%
±9.486

Mean: 88.83%
±4.455

Mean: 90.61%
±3.579

Liking Mean: 67.59%
±11.295

Mean: 88.38%
±6.416

Mean: 90.48%
±4.954

Dominance Mean: 66.22%
±12.528

Mean: 89.12%
±5.484

Mean: 90.95 %
± : 4.667

As can be seen in Table II, both models performed well
when tested on the same gender with female achieving 96.77%
recognition accuracy on female data, and male achieving
93.6% recognition accuracy on male data. However, both male
and female deep models performed poorly on the opposite
gender, achieving approximate accuracies of 15%. The low
recognition accuracy from cross-gender testing can be ex-
plained, in part, by the idea that neurons flow in different part
of the brain in males and females during emotion elicitation.
For women, these neurons connect the parts of brain that
regulate internal areas of body that impacts blood pressure,
respiration and hormones, while in men, these neurons connect
to the areas of brain that controls vision and movement [24],
[25]. It has also been noted that there are obvious differences
in the emotional responses of opposite genders when analyzing
facial features and physiological data [26]. An interesting
application that could benefit from these results is gender
classification, however, this is outside of the scope of this paper
and left for future work.

B. DEAP

When analyzing DEAP data with the proposed method,
we have found that the combination of both Peripheral and
EEG data (40 channels) gave the highest recognition accuracy
in 3 out of 4 of the emotion categories (arousal, liking,
and dominance). Peripheral data alone outperformed both for
valence with a mean accuracy of 86.31% compared to 86.09%
with both. EEG data alone (32 channels) performed the worst
in all categories (Table III). These results are supported by
previous studies that have shown a multimodal approach to
classification can lead to higher accuracy compared to a single
modality, when using physiological data to classify infant pain
[27].

As can be seen in Table III, the standard deviations for
each subject are much higher compared to those found in
Experiment 1 from the detailed BP4D+ experiments (Table I).
This is especially true when analyzing the arousal, liking, and
dominance emotion categories for EEG data alone. Arousal
had the lowest standard deviation for peripheral and EEG + pe-
ripheral experiments, although it is higher compared to valence
for EEG data alone. This could be partially explained by EEG
data not being able to easily generalize across subjects [28].
Although the standard deviation of peripheral data is lower
compared to EEG data, when both EEG and peripheral signals
were combined, they gave the lowest standard deviation for



Fig. 7. Subject accuracies for dominance emotion category. From left to right: EEG data, peripheral data, EEG and peripheral data.

each emotion category. Again, this can partially be explained
due to the multimodal nature of EEG + peripheral data. For
dominance and liking, the standard deviation is highest for
EEG data along with liking >11% and Dominance >12%.
Similar to arousal, this can partially be attributed to EEG data’s
inability to easily generalize across subjects. As can be seen in
Fig. 7, with dominance, there are approximately 6 subjects that
are causing the higher standard deviation (e.g. outliers). Most
of the subjects having an accuracy within the range of 50%-
70%, however, the 6 outliers are within the range of 80% to
100%. A question that arises from this work is: Is it possible
to generalize across subjects with EEG data? With valence
having the lowest standard deviation, among subjects, that can
be a good starting point for future experiments to answer this
question.

C. State Of The Art Comparisons

BP4D+. To the best of our knowledge Zhang et al. [15] are
the first and only to detail results on physiological data from
BP4D+. They randomly selected 45 subjects and conducted
two experiments. First, using hand-crafted features and a RBF
kernel SVM, they achieved an accuracy of 59.5% on happy,
sad, startled, fear, and disgust. Secondly, they performed
binary classification for low and high arousal. Using this
approach, they achieved an accuracy of 60.5% over all 10
emotions in the dataset. In the proposed approach, we achieved
an average accuracy of 94% on subject-independent training
and testing over all subjects, and all emotions, in BP4D+.

DEAP. This dataset has successfully been used for emo-
tion recognition since it’s release by Koelstra et al. [12].
Considering this, we compare against multiple state-of-the-art
approaches for recognizing the 4 emotion categories available
in the DEAP dataset.

TABLE IV
COMPARISON WITH CURRENT STATE OF ART FOR DEAP.

Valence Arousal Dominance Liking
Proposed method 86.31% 90.61% 90.95% 90.48%

Liu et al. [29] 85.2% 80.5% 84.9% 82.4%
Rozgic et al. [30] 76.9% 69.1% 73.9% 75.3%

Mert and Akan. [7] 72.87% 75.0% N/A N/A
Daimi and Saha [31] 65.3% 66.90% N/A N/A

Li et al. [32] 58.4% 64.3% 65.8% 66.9%
Jirayucharoensak et al. [33] 53.42% 52.03% N/A N/A

Koelstra et al [12] 65.2% 63.1% N/A 64.2%

As can be seen in Table IV, the proposed method outper-
forms the current state of the art on arousal, valence, liking,
and dominance. The increase in accuracy over the current
state of the art can be explained, in part, by the proposed
method using the combination of the different signals to train
a deep network (CNN) to recognize the emotions, where the
compared works use classical machine learning approaches.
Koelstra et al [12] used a Naı̈ve Bayes classifier, Liu et al [29]
used a linear Support Vector Machine (SVM), and Rozgic et
al [30] used a combination of K-PCA and 1-NN. While Li
et al [34] extracted features from a deep belief network, they
used an SVM to classify the emotions.



VI. DISCUSSION AND CONCLUSION

We have presented an approach to emotion recognition,
using physiological signals, that combines individual frames
from different signal types (e.g. blood pressure and respiration
rate). We tested the efficacy of the proposed approach on 2
publicly available datasets, namely BP4D+ and DEAP. The
proposed method outperforms the current state of the art
on BP4D+ and DEAP. It has applications in multimedia,
medicine, defense and military related fields. These appli-
cations include analysis of stress and pain, lie detection,
increasing soldier survivability in combat, and classification
of autism in children.

Recently, gender classification has been shown to be promis-
ing with facial features and deep CNNs [35]. Considering
this, we investigated generalization across genders, on BP4D+,
through gender-specific models of emotion. As shown in
section V-A, the gender-specific models of emotion performed
poorly when cross-gender data was used to test (e.g. male deep
model tested on female data). Interesting, a previous study
notes that physiological signals are similar during similar emo-
tions in male and female [36], however, our results contradict
this and are supported by the work from Whittle et al. [25],
as we previously mentioned in Section V-A.

An interesting application of these results, from the gender-
specific models, is using the proposed method to classify a
subject’s gender. Due to challenges with using facial data
for gender classification such as pose and lighting variation
[35], physiological data could be a useful alternative as it
does not suffer from those same challenges. Considering this,
we will conduct experiments on gender classification using
the deep gender-specific models we have developed here. We
will also compare the results from other deep neural network
architectures such as recurrent neural networks.
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