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ABSTRACT 

 

Landmark localization is an important first step towards 

geometric based vision research including subject 

identification. Considering this, we propose to use 3D facial 

landmarks for the task of subject identification. To detect the 

3D landmarks, we propose the use of a modified version of 

the Temporal Deformable Shape Model. We show that the 

detected 3D facial features can be used to model a wide range 

of subject identities, including those with large variations in 

expression. Experiments are conducted using a Support 

Vector Machine (SVM), Random Forest (RF), and Long 

Short-term Memory (LSTM) neural network for 

identification, on the BU-4DFE, BP4D, and BP4D+ 3D/4D 

face databases. We show that our proposed method 

outperforms current state of the art methods for subject 

identification on BU-4DFE and BP4D. To the best of our 

knowledge, this is the first work to investigate subject 

identification on the BP4D+, resulting in a baseline for the 

community. 

 

Index Terms— subjection identification, 3D, SVM, 

random forest, long short-term memory neural network 

 

1. INTRODUCTION 

 

Broadly, face recognition can be categorized as holistic, 

hybrid matching, or feature-based [39]. Holistic approaches 

look at the global similarity of the face such as a 3D 

morphable model (3DMM) [2]; hybrid matching make use of 

either multiple methods [14] or multiple modalities [17]; 

feature-based methods look at local features of the face to 

find similarities [40]. The work proposed in this paper can be 

categorized as feature-based. Due to its non-intrusive nature 

and wide applicability in security and defense related fields, 

face recognition has been actively researched by many groups 

in recent decades.  

Since some of the earlier methods for face recognition 

[30], [38], to more recent works within the past 10 years [5], 

[34] 2D face recognition has been an actively researched 

field. With the recent advances in deep neural networks, we 

have seen significant jumps in performance [11], [18], [22], 

[24], [26], [32]. Liu et al. [21] proposed the angular softmax 

that allows convolutional neural networks (CNN) the ability 

to learn angularly discriminative features. This was proposed 

to handle the problem where face features are shown to have 

a smaller intra-class distance compared to inter-class 

distance. Recently, Tran et al. [29] proposed regressing 3D 

morphable model shape and texture parameters from a 2D 

image using a CNN. Using this approach, they were able to 

obtain a sufficient amount of training data for their network 

showing promising results. Zhu et al. [41] proposed a high-

fidelity pose and expression normalization method that made 

use of a 3DMM to generate natural, frontal facing, neutral 

face images. Using this method, they achieved promising 

results in both constrained and unconstrained environments 

(i.e. wild settings). Although performance has been 

increasing and groups have been actively working on 2D 

issues such as pose and lighting, there are still some 

challenges that occur. In recent years, there has been more of 

an interest in using 3D face recognition to solve these issues 

[10], [11], [25]  due to the development of powerful, high-

fidelity 3D sensors.  

Echeagaray-Patron et al. [10] proposed a method for 3D 

face recognition where conformal mapping is used to map the 

original face surfaces onto a Riemannian manifold. From the 

conformal and isometric invariants that they compute, 

comparisons are then made. This method was shown to be 

have invariance to both expression and pose. Li et al. [20] 

proposed the use of SIFT-like matching using three 3D key 

point descriptors. Each of these descriptors were fused at the 

feature-level to describe local shapes of detected key points. 

Lei et al. [19] proposed the Angular Radial Signature for 3D 

face recognition. This signature is extracted from the semi-

rigid regions of the face, followed by mid-level features being 

extracted from the signature by Kernel Principal Component 

Analysis. These features were then used to train a support 

vector machine showing promising results when comparing 

neutral vs. non-neutral faces. Berretti et al. [1] proposed the 

use of 3D Weighted Walkthroughs with iso-geodesic facial 

strips for the task of 3D face recognition. They achieved 

promising results on the FRGC v2.0 [23] and SHREC08 [8] 

3D facial datasets. Using multistage hybrid alignment 

algorithms and an annotated face model, Kakadiaris et al. 

[15] used a deformable model framework to show robustness 

to facial expressions when performing 3D face recognition.  

Motivated by these works, we propose the use of a 

modified version of the Temporal Deformable Shape Model 

[6], to detect 3D facial landmarks for subject identification. 

See Figure 1 for an overview of the proposed approach. The 

main contribution of this work is 3-fold and is summarized as 

follows: 

 

1. Propose the use of 3D facial landmarks for subject 



identification using an SVM, RF, and LSTM network.  

2. Test the efficacy of our method on 3 publicly available 

3D faces databases [33], [35], [36], [37]. Combined, 

we test our method on over 620,000 3D faces across 

these 3 databases and show state of the art results on 

BU-4DFE [33] and BP4D [35], [36]. 

3. To the best of our knowledge this is the first work to 

perform subject identification on the BP4D+ [37] 3D 

face database, detailing a baseline for the community. 

 

 

Figure 1. Overview of proposed method for subject identification. 

Example is showing an unseen 3D mesh model of subject ‘F001’ 

from BP4D+ [37], who is correctly identified based on training a 

LSTM [13] from 3D facial data detected from the proposed SDDM. 

 
2. MODIFIED TEMPORAL DEFORMABLE SHAPE 

MODEL 

 

2.1. Temporal deformable shape model 

 

The Temporal Deformable Shape Model (TDSM) [6] models 

the shape variation of 3D facial data. Given a sequence of 

data (i.e. 4D), it also models the implicit constraints on shape 

that are imposed (e.g. small changes in motion and shape). To 

construct a TDSM a training set of 3D facial landmarks is 

required. First, the 3D facial landmarks are aligned using a 

modified version of Procrustes analysis [9].  Given a training 

set of size L 3D faces, where each face has N facial landmarks 

(aligned with Procrustes analysis), a parameterized model S 

is constructed, where 𝑆 = 𝐹1
1,…, 𝐹𝑁

1 , … , 𝐹1
𝑚,…, 𝐹𝑁

𝑚. 𝐹𝑖
𝑚 is 

the 𝑖𝑡ℎ landmark of the 𝑚𝑡ℎ 3D face in the training set, where 

𝐹𝑖
𝑚 = (𝑥𝑖

𝑚, 𝑦𝑖
𝑚 , 𝑧𝑖

𝑚) and 1 ≤ 𝑚 ≤ 𝐿. From this model, 

principal component analysis (PCA), is then applied to learn 

the modes of variation, V, of the training data. 

Given the parameterized model, S, and the modes of 

variation, V, to detect 3D facial landmarks, an offline weight 

vector, w, is constructed that allows for new face shapes to be 

constructed (i.e. these face shapes are constructed offline), by 

a linear combination of landmarks as 𝑆 = �̅� + 𝑉𝑤, where �̅� is 

the average face shape. These constructed face shapes are 

constrained to be within the range −2√𝜆𝑖 ≤ 𝑤𝑖 ≤ 2√𝜆𝑖, 

where 𝑤𝑖  is the 𝑖𝑡ℎ weight in the range, and  𝜆𝑖 is the 𝑖𝑡ℎ 

eigenvalue from PCA. This constraint is imposed to make 

sure the new face shape is a 3D face.   

To fit (i.e. detect landmarks) to a new input mesh, the 

offline table of weights (w) is constructed with a uniform 

amount of variance. The Procrustes distance, D, is then 

computed between each face shape (referred to as an instance 

of the TDSM) and the new input mesh. The smallest distance 

is considered the best detected landmarks. This is not meant 

to be an exhaustive overview of a TDSM, therefore we refer 

the reader to the original work [6] for more details. 

 

2.2. Modified temporal deformable shape model 

 

The TDSM has no direct convergence criterion as it 

calculates D for all instances that have been created. 

Considering this, we propose a modified version with a 

convergence criterion. For this version, model construction is 

carried out in the same manner, however, the detection of 3D 

landmarks is optimized. We modify this part of the algorithm 

by proposing a convergence criterion based on the mean 

squared error (MSE) calculated between the new detected 

points (found from the Procrustes distance), and the original 

instance that was used. Given detected landmarks on an input 

mesh, the MSE is then calculated between these landmarks, 

and the landmarks from the instance that was used to detect 

them on the input mesh. This can be done, as the MSE will 

be low if a good fit has been found, otherwise it will be high.  

To find the best detected landmarks, w is varied by 

stepping through the range [−𝜎, 𝜎] (𝜎 is the standard 

deviation of the training set) and constructing new instances 

to detect landmarks on the input mesh model. Starting at 𝑤 =
0 (i.e. the average face), we make one step in a positive 

direction towards 𝜎 , and one in a negative direction towards 

-𝜎. Both instances are then used to detect landmarks on the 

input mesh, and their MSE is calculated. Whichever instance 

results in the lowest MSE is chosen as the starting point for 

the first iteration. We then continue to step in the same 

direction of the starting instance (either towards 𝜎 or −𝜎) 

until the MSE increases. Once this occurs, we keep the 

previous iteration as we have found the global minimum of 

the TDSM detection process resulting in the best landmarks. 

See Figure 2 for examples of the detection process, including 

the MSE for each step. 

 

3. EXPERIMENTAL DESIGN AND RESULTS 

 

Using the modified TDSM algorithm, detailed in section 2, 

we detected 83 facial landmarks on 3 publicly available 3D 

face databases: BU4DFE [33], BP4D [35][36], and BP4D+ 

[37]. From these facial landmarks, we then conducted subject 

identification experiments, where the landmarks are used as 

training data for 3 machine learning classifiers (detailed in 

3.2). Using these 83 facial landmarks we have also reduced 

the dimensionality of the 3D faces from over 30,000 3D 

vertices, while still retaining important features for subject 

identification. This allows us to reduce storage requirements, 



as well as processing time of the 3D face, which can be 

limitations of 3D face recognition [4], [16]. An overview of 

the databases and the experimental design is detailed in the 

following subsections. 

 

3.1. 3D face databases 

 

For our experiments, we chose 3 state-of-the-art 3D face 

databases, and investigate a total of 620,326 3D facial 

landmarks (i.e. faces). Details on each are given below. 

 

BU-4DFE [33]: Consists of 101 subjects displaying 6 

prototypic facial expressions plus neutral. The dataset 

consists of 58 females and 43 males, including a variety of 

racial ancestries. The age range of the BU-4DFE is 18-45 

years of age. In total, there are over 60,000 frame of 3D facial 

data; which we used all of for our experiments.  

 

BP4D [35], [36]: Consists of 41 subjects displaying 8 

expressions plus neutral. It consists of 23 females and 18 

males; 11 Asian, 4 Hispanic, 6 African-American, and 20 

Euro-American ethnicities are represented. The age range of 

the BP4D is 18-29 years of age. For our experiments, we 

again used the entire database, which consists of over 360,00 

frames of 3D facial data. Although this database was 

developed to explore spatiotemporal features in facial 

expressions, due to its size and large variation in expression 

it is a natural fit for our subject identification study.  

 

BP4D+ [37]: Consists of 140 subjects (82 females and 58 

males) ages 18-66. This data corpus consists of ethnic and 

racial ancestries that include Black, White, and Asian each 

with highly varied emotions. These emotions are elicited 

through tasks designed to elicit dynamic emotions in the 

subjects such as disgust, embarrassment, pain, and surprise 

resulting in a challenging dataset. For our experiments, we 

selected a subset of the entire database (over 1.5 million 

frames), which consists of over 150,000 frames of data 

distributed across all 140 subjects. Like the BP4D database, 

this was designed to study emotion classification, however, 

due to the diversity of subjects, large variety and range of 

emotions, it too is a natural fit for our study.  

 

3.2. Experimental design 

 

To conduct our experiments, we detected 83 facial landmarks 

on the 3D data using the modified TDSM (section 2.2.). 

Given 3D facial landmarks, we then translate them so that the 

centroid of the face is located at the origin in 3D space, to 

align the data. The translated 3D facial features are then used 

for subject identification. Each of the 3D facial landmarks (x, 

y, z coordinates) are inserted into a new feature vector. For 

all 83 landmarks this gives us a feature vector of size 

83 × 3 = 249. This feature vector is used to train the 

classifiers for subject identification. For our experiments we 

trained a support vector machine (SVM) [31], random forest 

(RF) [3], and Long short-term memory (LSTM) neural 

network [13]. Our network consists of 1 short-term memory 

layer with a look back of 2 faces (estimated landmarks), 

followed by 0.5 dropout, and a fully connected layer for 

classification. The softmax activation function was used, 

along with the RMSprop [28] optimizer with a learning rate 

of 0.0001. 

For each classifier, each subject’s identity was used as 

the class (each 3D face is labeled with a subject id). As we 

will show; accurate results on an SVM, RF, and LSTM show 

the robustness of the 3D facial landmarks to multiple machine 

learning classifiers.  Using the 3D face databases detailed in 

3.1, we used 10-fold cross validation for training and testing 

for our subject identification experiments. The data is 

randomly split into 10 subsets where one set is used for 

testing and the other nine are used for training. Each of the 

Figure 2. 12 steps (iterations) of a TDSM on a 3D model from BP4D+. Top row shows detected landmarks for steps 1, 3, 5, 7, 9, and 11 

(from left to right). Bottom row shows graph of MSE for each step. Iteration 7 has lowest MSE of 1.89 and results in the best detected 

landmarks. NOTE: More iterations shown for visual purposes only as the modified TDSM converged at iteration 7. Best viewed in color. 



subsets is used for testing, where each iteration separates the 

test set from the training data.  

 

3.3. Subject identification results 

 

Using the experimental design detailed in the previous 

section, we achieved an average correct subject identification 

rate of 99.91%, 99.96%, and 99.93% for a RF, SVM, and 

LSTM respectively, across all databases (Table 1).  

 
Table 1. Subject identification accuracies for the 3 tested datasets 

and classifiers. 

 BU4DFE BP4D BP4D+ 

SVM 99.9% 99.9% 99.9% 

RF 100% 99.9% 98.8% 

LSTM 100% 99.9% 99.9% 

 

As can be seen in table 1, an SVM, RF, and LSTM can 

accurately identify subjects from the BU4DFE, BP4D, and 

BP4D+ datasets achieving a max accuracy of 100% on the 

BU4DFE, and a minimum accuracy of 98.8 percent on the 

BP4D+. All three of the tested classifiers achieved consistent 

results across all three datasets. As each of the datasets, 

contains large variations in expression, these results suggest 

the detected 3D landmarks are invariant to expression 

changes, for the task of subject identification.   
 

3.4. Comparisons to state of the art 

 

We also compared our proposed method to the current state 

of the art on BU-4DFE [33] and BP4D [35], [36]. As 

previously mentioned, to the best of our knowledge this is the 

first study to perform subject identification on BP4D+ [37]; 

therefore, we did not have any works to compare against 

resulting in a baseline for the community. Also, to the best of 

our knowledge, there is only one prior work detailing subject 

identification results on the BP4D dataset as shown below. 

The comparisons for BU-4DFE and BP4D can be seen in 

Table 2. 
 

Table 2. Comparisons of proposed method to current state of the art 

on BU-4DFE and BP4D. 

Method BU-4DFE BP4D 

Proposed method (RF) 100% 99.9% 

Proposed method (LSTM) 100% 99.9% 

Proposed method (SVM) 99.9% 99.9% 

Sun et al. [27] 98.61% NA 

Fernandes et al. [12] 96.71% NA 

Canavan et al. [7] 92.7% 93.4% 

 

It is important to note that Canavan et al [7] used a small 

subset of both the BU-4DFE and BP4D datasets for their 

experiments. They used 1800 and 2400 respectively, while 

we used all data in both datasets (60402 and 367474 

respectively). The work from Sun et al. [27] also requires 

both spatial and temporal information to achieve their results 

of 98.61%, while our approach can identify a subject based 

on one frame of data, which is useful when temporal 

information does not exist. 

 

4. CONCLUSIONS 

 

We have proposed detecting 3D facial landmarks with a 

modified TDSM for the task of subject identification. We 

have shown that detected landmarks can be used to accurately 

identify 282 subjects from three 3D face databases, for a total 

of 620,326 faces. The proposed method outperforms current 

state of the art on 2 publicly available 3D face databases 

achieving a max identification accuracy of 100% on BU-

4DFE and 99.9% on BP4D. To the best of our knowledge, 

this is the first work to report subject identification results on 

the BP4D+, resulting in a new baseline for the community. 

Using the detected facial landmarks, we have detailed 

accurate subject identification results using a random forest, 

support vector machine, and long short-term neural networks. 

We have also shown that the detected 3D facial landmarks 

can decrease the overall storage requirements of 3D facial 

data, while maintaining robustness to multiple machine 

learning classifiers, as well as robustness to facial expression. 

We will investigate this robustness/invariance to expression 

in future work, by investigating the entire BP4D+ (compared 

to the subset detailed here), as well as other state-of-the-art 

3D face datasets that contain expressions. 
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