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Abstract—The quantification of visual affect data (e.g. face
images) is essential to build and monitor automated affect
modeling systems efficiently. Considering this, this work pro-
poses quantified facial Temporal-expressiveness Dynamics (TED)
to quantify the expressiveness of human faces. The proposed
algorithm leverages multimodal facial features by incorporating
static and dynamic information to enable accurate measurements
of facial expressiveness. We show that TED can be used for
high-level tasks such as summarization of unstructured visual
data, and expectation from and interpretation of automated affect
recognition models. To evaluate the positive impact of using TED,
a case study was conducted on spontaneous pain using the UNBC-
McMaster spontaneous shoulder pain dataset. Experimental
results show the efficacy of using TED for quantified affect
analysis.

I. INTRODUCTION

Visual expressiveness is the representation of how people
outwardly display how they feel (e.g. visual emotion elici-
tation), which has some degree of variability based on the
affective response [1]. Complementary to this, facial temporal
dynamics is how people change their facial expressiveness to
display the transition of emotional states such as negative state
to neutral state to positive state. Considering this, we combine
static and dynamic facial information to quantify the temporal-
expressiveness of faces for robust affect analysis.

There are multiple challenges in automated emotionally
intelligent systems that necessitate the quantification of expres-
siveness. First, affect datasets are usually labeled by human
reporters using observer-report, self-report, or expert-report.
Discrete categories for a segment of data (e.g., happy label for
video) are used for these, which is a subjective task. The major
concern is that this approach fails to capture details of affect
information from the samples since the intensity of expression
may not be the same throughout the video [2]. To understand
and build better automated affect modeling systems, we should
measure the intensity of the facial-emotion expression along
with the discrete expression. Second, to develop and monitor
intelligent systems, practitioners have to perform tasks such as
data collection, data processing, modeling, inference, and sys-
tem monitoring. Due to the large amount of unstructured data
(e.g., video) that is currently available [3], [4], it is infeasible
for practitioners to manually explore the data to investigate
the quality of data (e.g. expressiveness). Therefore, there is a

need for automated methods that help practitioners explore
the dataset efficiently. Also, having measurements such as
facial expressiveness, that can create human-understandable
interpretations of the decisions from automated affect models
is essential, especially in sensitive domains like healthcare.

The quantification (i.e., objective measurement) of expres-
siveness is important from the application domains perspec-
tive. Even though subjective measurements such as self-report
(considered the gold standard in psychology), and observer
report (controlled and goal-oriented response) has been quite
extensively used in practice, these reports could be the victim
of reporters bias, variance, and ambiguity based on memory
and verbal ability [5]–[9]. Also, unconscious people, people
with mental disabilities, and children may not be able to
provide subjective reports. Healthcare professionals need ob-
jective pain assessment methods to treat patients objectively.
The objective, quantified measurement of expressiveness has
the potential to assist people with communication disabilities
[10], people with emotional expression deficits [11], and
people with sleep deprivation issues [12]. Last but not least, it
has the potential to improve peer competence [13], anticipation
and interaction [14] among people.

In this work, we propose quantified facial Temporal-
Expressiveness Dynamics (TED) to quantify facial expres-
siveness at the video frame level by incorporating static and
dynamic facial information. This is done by leveraging mul-
timodel features including facial action unit [15] intensities,
facial landmarks, head pose, and eye gaze. The features
are used as input to TED, which then outputs a relative,
continuous score. This score can be computed for the overall
expressiveness of a frame, and/or affect-specific expressive-
ness for a given frame. Based on the computed expressiveness
score, high-level tasks can be completed such as i) creating a
summary of affect dataset; ii) setting up the expectation from
affect prediction models and interpreting the results of the
model. To evaluate the efficacy of TED, a case study was
performed on spontaneous pain using the UNBC-McMaster
shoulder pain dataset [16] and obtained promising results.
This work has the potential to complement and/or to replace
existing measurement methods [5]–[7], [9], to identify the
moment of interests [17] in videos, to analyze affective visual
data, and to interpret affective machine learning models.



Fig. 1: Computational pipeline of TED. From the input video, multimodal facial features (e.g., landmarks) are computed and then
used as input to TED. The output is used to perform high-level tasks that include, but are not limited to, affect summarization,
and model interpretation. NOTE: (...) indicates other tasks that TED can perform such as domain shift identification.

Our main contributions can be summarized as follows.
1. Quantified facial Temporal-expressiveness Dynamics

(TED) is proposed to quantify facial temporal-
expressiveness. See Fig. 1 for the computational pipeline
of TED. Quantitative and qualitative analyses demonstrate
the efficacy of TED.

2. Summarizing unstructured visual data using TED, to extract
insightful information from the affect data, is introduced.
Useful insight such as visual cues may not always be a
strong indicator of affect state are captured.

3. Expressiveness-based interpretation for predictive affect
models is introduced. The results suggest that TED can
be used to interpret the goodness of predictive models.

The rest of the paper is organized as follows: Section II
covers the context and background information. Section III
contains the proposed algorithm and its applications. Section
IV contains a brief description of the studied dataset, and
Section V comprises the conducted experiments and obtained
results. Finally, in Section VI, the generalization of the pro-
posal is described and the limitations are addressed.

II. RELATED WORK

Expressiveness and temporal dynamics. Although less ex-
tensive, there are some important works on facial dynamics in
which dynamics was defined for individual action units using
discrete categories such as onset, apex, offset. Jiang et al. [18]
and Valster et al. [19] both predicted AU temporal segments
using temporal appearance features. There are some works
on expressiveness as well. Such as Hammal et al. [20], [21]
examined facial expressiveness in infants with and without
complex congenital conditions named craniofacial microsomia
which could impair facial expressiveness; they reported that
expressiveness varied between positive and negative affect.
Neubauer et al. [22] reported that oxytocin increases facial
expressivity in both healthy and schizophrenia populations.
Guha et al. [23] investigated how children with high function-
ing autism (HFA) differ from their typically developed peers;
they reported a reduction in the complexity of facial behavior
especially in the eye region of the HFA group compared to
their peers. Lin et al. [24] proposed an extension to the BP4D+
dataset [3] in which they rated video sequences in terms of
expressiveness using a discrete scale and rely on the human

rating from crowd workers at Amazon Mechanical Turk. They
studied only segments of video where emotion elicitation was
at its peak. Werner et al. [25] provided some insight into
expressiveness when the pain was induced via heat. One of
their interesting findings was that low pain intensities do not
show facial response in many cases. Lei et al. [17] reported
that expressivity can explain unexpectedness of outcomes in
social dilemmas and also can identify the moment of interest
in video sequences. In contrast to these studies, we propose
to characterize expressiveness more objectively to incorporate
as much information as possible using an algorithmic ap-
proach to produce a continuous temporal-expressiveness score
at frame level for a given affect video. There are several
works on expressiveness in affective robotics (e.g., expressive
humanoid robot with facial muscle movements [26] to improve
qualitative interactions) and affective speech processing (e.g.,
expressive speech synthesis from text [27]), as well.

Annotated visual affect datasets. The publicly available
affective computing datasets usually contain either categorical
labels (e.g., happy, sad), dimensional labels (e.g., arousal,
valence), or both. Data are usually annotated by participants,
observers, and domain experts. For instance, BP4D+ is a
spontaneous facial expression dataset that was annotated at
the video sequence level by both observers and participants.
BP4D [28] is also a spontaneous facial expression dataset
and annotated by observers. There are several other static and
dynamic facial expression datasets that include, but are not
limited to, FERA [29] (static expression), BU3DFE [30] (static
expression), and BU4DFE [31] (dynamic expression). Some
specialized datasets are collected to study facial action units
(muscle movements) [15]. For example, DISFA [32] contains
spontaneous facial expressions and manual annotations of a
subset of action units using a 6 point scale in the range of
[0, 5]. DISFA+ [33] is an extension of the DISFA dataset
that contains posed and non-posed expressions along with all
other features of DISFA. FEAFA [34] is a recently released
posed expression dataset that contains expert-coded action unit
intensities in the range of [−1, 1].

There are also datasets that were designed to study facial
pain expressions such as MIntPain [35], BioVid [5], emoPain
[36], and UNBC-McMaster shoulder pain expression datasets
[16]. UNBC-McMaster shoulder pain expression dataset [16]



is a unimodal dataset that contains the spontaneous facial
expression of patients’ with shoulder pain. In this work, we
experimented with UNBC-McMaster pain dataset given the
dataset has adult patients’ (as participants) elicitating spon-
taneous facial expressions, manually annotated intensities of
(pain-related) facial action units of each frame, pain intensity
annotation using pain assessment scale, self-reported and
observer reported pain scores, and also data collection was
done in a laboratory setting that was similar to hospital.

III. METHOD

A. Motivation and Multimodal Facial Features Tracking

The first step of the proposed method is to track multimodal
facial features. Constrained local neural fields (CLNF) [37] is
used to track 2D facial landmarks. It is known that people
tend to move their heads and faces when they make a transition
from one affective state to others (e.g., neutral to positive affect
state) [20], [21] and this information can be captured from
head pose [38], [39]. Considering that, this work tracks head
pose translation and rotation using CLNF [40].

Attentiveness (gaze) is also a crucial part of affect analysis,
especially for people with communication disabilities [10]. Re-
cent works showed a strong link between emotion recognition
and eye gaze estimation [41], [42] which motivates us to use
gaze to measure temporal expressiveness dynamics. Thus, we
incorporate eye-gaze features in our algorithm by capturing
gaze from the left eye and right eye.

Facial action unit (AU) [1] intensities can represent both
static and dynamic information about an expression. Motivated
by this, a core component of TED is AU intensities. Note that
AUs have a strong relationship with individual expressiveness,
personality, skin conductance, heart rate, and self-report [15].
Considering this, we analyze both manually coded AUs and
predictive (machine learning) model coded AUs using the
method proposed by Baltrusaitis et al. [43].

B. Quantified Facial Temporal-Expressiveness Dynamics

In the proposed quantified facial Temporal-Expressiveness
Dynamics (TED) algorithm, we combine static and dynamic
facial information that is representative of the expressiveness
since people use both static and dynamic information to
convey emotion [44]. To compute static information, this work
relies on the facial action unit intensities [1], [45] for a given
video frame. Hence, in this work, for a given video frame, the
static information is computed using Eqn. 1.

S =

n∑
1

ev (1)

Where v contains AU intensities and n is the total number
of AUs. The argument behind computing the exponent of the
intensities is to put more weight on AUs with high intensity
such as extreme (D) and maximum (E) compared to low
intensities such as trace (A) and slight (B). The motivation
behind weighting is that, in terms of expressiveness, the differ-
ence between neutral (i.e. AU is inactive) and low intensities
(e.g. A,B) is relatively small, while the difference between

low intensities and high intensities is relatively large. We
encode the FACS AUs as follows: A = 1, B = 2, marked
/ pronounced C = 3, D = 4, E = 5. This is done to transform
from a categorical scale to a numerical scale that TED can
utilize. Our work is motivated by Werner et al. [25], who
found that it is extremely hard to distinguish between neutral
frame and low-intensity pain, while it is comparatively easier
to distinguish between neutral and high-intensity pain. This
is due to humans usually showing little to no facial response
during low-intensity pain elicitation.

Note that dynamic information can capture coherency in
affect identification, and can distinguish between posed and
spontaneous expressions [46]. To measure dynamic informa-
tion, this work relies on the relative change of the proposed
features (e.g., landmarks, headpose, gaze, and AU intensities).
Since the theoretical grounding and mathematical representa-
tion (e.g. geometry, range of values) of landmarks, headpose,
gaze, and AU intensities are different, the relative change is
measured using vectorized standardized Euclidean distance,
which is a unit normalized (i.e. independent) measurement
technique [47]. The relative change (Cr) between consecutive
frames is computed using Eqn. 2.

Cr =

{
0 if var(fi) + var(fi+1) = 0

var(fi+1,fi)
var(fi)+var(fi+1)

otherwise
(2)

Where f is the video frame, i is the frame index, and var
is the variance [48] between fi and fi+1. Note that initial
video frame f1 is treated as a reference frame. Eqn. 2 does
not provide information about the direction of change (Ds),
therefore to get this information the sum of the vectorized
displacement is computed using Eqn. 3 in which m represents
the length of the facial feature vector.

Ds =

{
+1 if

∑m
i=1[fi+1 − fi] ≥ 0

−1 otherwise
(3)

To accurately capture the dynamics, Eqn. 2 and Eqn. 3 are
multiplied to obtain product P = Ds ∗ Cr. After getting P
for the frames of the video, we then compute the moving
average M = 1

w

∑w+i−1
i Pi (i is the video frame index) over

P using a window length of w. For example, when i = 10
and w = 5, M is computed over P of video frames 10
through 14. It is important to note that Cr, Ds, P , and M
are computed for each facial feature set (e.g., landmarks (L),
headpose orientation (Ho) and rotation (Hr), left and right eye
gaze (Gl and Gr), and AUs’ intensities (I)), separately.

Notice that static information S is captured in Eqn. 1
and dynamic information is captured in the form of moving
average M for each feature set. The static information Si,
in the ith frame, is combined with dynamic information M
computed over the frames up to i for each feature set using a
simple and efficient formulation (Eqn. 4).

Score = Si ∗ [1+ML ∗MHo
∗MHr

∗MGl
∗MGr

∗MI ] (4)

Where Mx represents relative change (dynamics) with re-
spect to feature set x (e.g. ML means the dynamics captured



(a) Subject 43, sequence 05. (b) Subject 80, sequence 02.

Fig. 2: Sample TED scores computed in experiments E1 and
E2. Difference between E1 and E2 is mentioned in Section V.

using the landmarks L). The output of Eqn. 4 is the quantified
expressiveness score (TED score) of the frame fi. See Fig. 2
for sample sequences with computed TED scores.

Overall facial expressiveness, and affect-specific expres-
siveness. TED can be used to quantify expressiveness for
a given human face in a video regardless of any specific
affective expression, and in this work, we define it as ”overall
expressiveness”. TED can also be used to quantify the expres-
siveness of affect-specific expression such as happy or pain. To
compute affect-specific expressiveness, TED requires AUs that
are related to that specific affective expression. For example, to
compute the expressiveness of happy expression, TED requires
AUs: 6, 7, 12, 25, 26 as input. This is motivated by the work
from Barrett et al. [45] which provided the list of combinations
of AUs that correspond to affect-specific expressions.

C. High-Level Tasks (Use Cases of TED)

1) Affect Summarization: Having insight about data that
are used, in affect modeling, is essential since the quality
of the predictive models depends on the quality of data.
Recall that visual affect data are unstructured data which
makes the assessment of data quality extremely challenging.
To alleviate this, TED can be used objectively at scale, within
a very short amount of time, for data assessment as it maps
video (unstructured three-dimensional data) to sequence of
continuous values (structured one-dimensional data). Hence,
this work outlines the summarization (profiles) of the visual
affect data by performing statistical measurements on the
expressiveness measured by TED. The proposed approach can
create a descriptive summary of a video sequence, segments
of a sequence, and the entire dataset. This has the potential to
bolster the development cycle of automated affect systems by
analyzing affect data at scale.

2) Expectation and Model Interpretation: Affective ma-
chine learning systems are expected and required to be
interpretable to serve in sensitive application domains like
healthcare. The system must have components that could
assist professionals both from automated system develop-
ment (e.g., software developer) and application domains (e.g.,
nurse) to understand how the model makes decisions (i.e.,
explain/interpret results). Since there is a strong relationship
between expressivity and affect states [25], we devise the TED

score to set up the expectation from the model, and to interpret
the confidence of the model for a given sample.

E =

{
Confidence (↑) when Score (↑)
Confidence (↓) when Score (↓)

(5)

For instance, in the case of pain localization from visual
data, it is expected that when pain-specific TED score is high,
the model should produce pain as output with high confidence
(i.e., high pain class probability). In contrast, when TED score
is low, the model is expected to generate low confidence
for pain (i.e., high confidence for no pain) because a low
TED score indicates less expressiveness, which means the
sample is likely to be a no-pain sample (see Eqn. 5). If the
expectation is met, then we can say that there is an agreement
between TED and the model (i.e., results likely to be correct).
Otherwise, we can say that there is a disagreement between
TED and the model, which means either the TED score or
model prediction is likely to be wrong. That will lead us to
further investigate TED and the prediction model, which will
improve the trustworthiness of the system.

IV. DATASET

The proposed TED was evaluated on the UNBC-McMaster
shoulder pain expression dataset [16]. The dataset contains
200 video sequences (48398 frames in total) of 25 patients
elicitating spontaneous facial expressions. Each video frame in
this dataset was manually AU coded using FACS via certified
coders. The available AUs are 4, 6, 7, 9, 10, 12, 20, 25, 26, 43.
The dataset contains three types of self-reported pain scores at
video sequence level using scales named visual analog scale
(VAS), sensory scale (SEN), and affective (AFF). The dataset
also has observer reported pain scores at video sequence
level using observer pain intensity (OPI) scale. Note that
these scales provide subjective measurement. Using VAS scale,
patients label video sequence for emotional pain in the range
of ”no pain” (pain score (Ps) = 0) to ”pain as bad as it could
be” (Ps = 10). In SEN scale, patients reported pain from
”extremely weak” (Ps = 0) to ”extremely pain” (Ps = 10). In
AFF scale, patients reported pain from ”bearable” (Ps = 0)
to ”excruciating” (Ps = 10). In OPI scale (anchored Likert
scale), trained observer reported observed pain expression
from ”no pain” (Ps = 0) to ”strong pain” (Ps = 5).
Facial pain intensity is also annotated at video frame level
using the Prkachin and Solomon pain intensity (PSPI) scale
[49]. VAS, SEN, AFF, OPI, and PSPI scales have ranges
of [0, 10], [0, 10], [0, 10], [0, 5], [0, 16], respectively, where 0
indicates no pain, and 10, 5, and 16 indicates maximum pain.

Patients experienced different types of pain (e.g., bursitis,
tendonitis), and 50% of the patients took pain medications. To
elicit painful expressions, patients performed eight active and
passive range-of-motion tests (including abduction, flexion,
and rotation) to affected and unaffected limbs in two different
sessions. Similar to other affective (healthcare) datasets [3],
this dataset is also highly imbalanced (83.6% of the frames
do not represent pain expression, according to PSPI scale).



Fig. 3: Statistical summary of correlation between TED and
PSPI scores observed in experiments E1 and E2. The spread
in the data is based on the participants in the studied dataset.

Note that this study excluded patient 101 from the experiments
since the patient did not have samples with pain expression.

V. EXPERIMENTS AND RESULTS

Evaluation. To quantitatively evaluate the effectiveness of
the proposed TED algorithm, Pearson correlation coefficient
(PCC), and significant test (p-value) were used. Qualitative
analysis of TED and affect summarization (using TED) was
demonstrated by visualizing subjective reports against the TED
score. Finally, in the expectation and model interpretation case,
to validate the pain classification model, leave-1-subject-out
validation was performed and result was reported using F1-
score.

Benchmark. It is important to note that previous works
on facial dynamics focused on modeling multiple states of
individual AUs and expressiveness works focused on video
level expressiveness. In contrast, TED focuses on measuring
expressiveness of a given video frame, not individual AUs.
Considering this, direct comparison with previous works is
not feasible with our experimental design. To the best of
our knowledge, this is the first attempt towards quantifying
temporal-expressiveness at video frame level, resulting in a
baseline, on the UNBC-McMaster shoulder pain dataset [16].

Multimodal Facial Features Tracking. OpenFace [40], a
publicly available facial behavior analysis tool, was used to
track facial features. This work tracked L,Ho, Hr, Gl, Gr, and
I . Since AUs are the core component of TED, we conducted
two sets of experiments: E1: compute TED score using man-
ually coded AUs along with openFace tracked L,Ho, Hr, Gl

and Gr; E2: compute TED score using predicted (via ma-
chine learning model) AUs along with openFace tracked
L,Ho, Hr, Gl and Gr. Since this work intended to study facial
pain expression, this work considered pain expression related
AUs only that are 4, 6, 9, 10, 25, 43 [50]. Note that openFace
does not predict AU 43; hence, in experiment E2, all pain-
related AUs were used except AU 43.

A. Quantitative Evaluation of TED

An ablation study was performed on window length w
to verify how far back temporal changes (i.e., dynamic in-
formation) need to be tracked. The following set was used,

w = {3, 5, 10, 20, 40, 60, 75}, where w = 10 is moving
average M over 10 consecutive frames (0.5 second of data).
Recall that PCC and p-value were used as evaluation metrics,
to quantitively measure the similarity between the TED score
and PSPI score. The reasoning behind comparing TED against
PSPI is that, for a given frame, PSPI represents overall pain
and the TED score represents overall pain expressiveness.

The PCC and p-value were computed for each subject sepa-
rately. From Fig. 3, we infer that there is a positive correlation
between the TED score and PSPI score for most participants.
That is a strong indication that using the combination of
static and dynamic facial information in TED can quantify
the pain-specific expressiveness. We can also observe that
there is a significant influence of w on the performance of
the algorithm; more precisely, using a w that is too small or
too large may not be useful due to the dynamic and fragile
nature of the facial expressions. Based on the results shown in
Fig. 3, we can imply that to capture the dynamic component of
expressiveness for a moment of time, more emphasis should
be put on most recent ([0.5, 1] second) facial information.
In terms of PCC, it is noticeable from the median lines in
Fig. 3 that in both E1 and E2, TED was able to compute
the expressiveness with reasonable PCC values. Temporal-
expressiveness was captured more accurately in experiment
E1 compared to experiment E2. It is evident in Figs. 4b and
4d that TED failed to properly quantify the highly expressive
frames in E2. The performance degradation in E2 could be
explained, in part, by the error from the AU prediction models
[40] as AU prediction models are not as good as expert
(human) AU coders yet [51]. For each of the experiments
shown in Fig. 3, the computed p-value was ≤ 0.005, except for
participant 49 (p-value = 0.21 when w = 3). In our manual
investigation into video data, we observed that participant 49
wore glasses which introduced occlusion that can degrade
the AU prediction performance making the quantification of
temporal-expressiveness difficult.

To provide a formal baseline, we included the mean PCC
value obtained across participants. The optimal PCC value
was obtained when w = 10; in experiment E1 and E2,
mean PCC (and p-value) scores were 0.75(0) and 0.57(0),
respectively. The spread of the PCC values in Fig. 3 highlights
the variability of pain-related expressiveness among partici-
pants. From that, we can conclude that individual differences
among people in terms of pain elicitation could be a crucial
factor in pain assessment based on visual data. Hence, in our
next experiment, we focused on qualitative evaluation of TED
by visualizing the relationship between TED and subjective
reports such as self-reported and observer-reported pain scores
in which we also incorporated gender as demographic context
to evaluate gender-based variability.

B. Qualitative Evaluation of TED and Affect Summarization

To provide a qualitative evaluation of TED and how TED
could be used to mine insightful information, this work ex-
plored the relationship between subjective pain reports (VAS
and OPI scales) and TED. For a given pain reporting scale,



(a) Experiment E1 (b) Experiment E2 (c) Experiment E1 (d) Experiment E2

Fig. 4: Descriptive affect summary. Visualization of subjective pain scores against the logarithm of TED. To increase the
readability of figure, logarithm of TED score was used instead of TED score itself. See Sec. V(B) for details about the figure.

for each unit/category of the scale, the descriptive summary of
the TED score was computed and visualized (Fig. 4). Notice
in Fig. 4 that the gender information was also incorporated
as we are interested in depicting gender-specific variability in
facial expressiveness [52].

As can be seen in Figs. 4a and 4c, when the self and
observer reports were 0, the TED score of most frames across
all subjects was approximately 6 (e1.8 ≈ 6). Hence, we can
imply that in the context of pain expression, frames with TED
score 6 represents no pain expression. Another interesting
finding is that no pain sequences also contain nominal frames
with moderate to high TED score indicating that no pain
samples contain pain frames as well. When the score is greater
than 6, the frames usually contain pain expression. Notice that
when the VAS score and OPI score were in the ranges [1, 5)
and [1, 3) (i.e., low to moderate pain), most sequences contain
a small percentage of pain frames (TED score > 6). This
suggests that the pain frames are outliers in those sequences.
This could make classifying pain sequences from no pain
sequences challenging due to the similarity issue [25]. In
contrast to low to moderate pain sequences, high intensity
pain sequences contain a wide range of moderate to highly
expressive frames, although a large number of frames are in
the range of no pain to low pain. This suggests that the dataset
is imbalanced in terms of expressiveness. This finding aligned
with findings reported by Lucey et al. [53] in which the authors
reported that only 16.3% of frames in the dataset represent
some form of pain expression.

This work also investigated whether gender plays any sig-
nificant role in facial expressiveness. As we can see in Fig.
4, the distribution of expressiveness (TED scores distribution)
is quite different between males and females. For instance,
female participants elicited facial pain expression for longer
periods of time compared to male participants. However, a
concluding remark of women are more expressive than men
is not realistic given that the studied dataset contains only 25
participants combined. These results are interesting and further
investigation into this is necessary to gain more insight into
the expressiveness of males versus females.

This work also explored the variability in reporters perspec-
tive using TED, and VAS and OPI scales. From Figs. 4a and

4b, it can be observed that the self-reported high intensity
pain (VAS = 10) sequences are less expressive than sequences
with relatively less intensive pain (VAS score in between 7 to
9). This observation could be explained by the fact that in
self-report, participants reported what they felt. Also keep in
mind that the sample size of highest VAS scored sequences
is relatively small which could skew the observation. On
the other hand, in observer reported pain (OPI scale), it
can be seen from Figs. 4b and 4d that when the observer
observed high intensity pain expression (i.e. OPI score is high),
TED based facial expressiveness score tends to be high as
well. This phenomenon is understandable as observers usually
report what they see (i.e., put more emphasis on the visual
cues). Hence, our observations suggest that relying on visual
information alone to predict affect states could be misleading
to some extent. One possible solution would be combining the
visual information with reporters’ perspective, demographics,
other modalities (e.g., physiology), and context to effectively
model and predict affect.

C. Expectation and Model Interpretation

To provide experimental results of expectation and model
interpretation, using TED, random forests algorithm [54] was
trained to classify pain frames from no pain (neutral) frames
using manually coded pain-related AU intensities. As men-
tioned earlier, leave-one-subject-out validation was used to
validate the classifier and the pain classification result was
reported using F1-score. The classifier obtained a mean F1-
score of 0.86 across participants. Note that to set up what we
could expect from a trained pain classifier and to interpret the
results produced by the classifier, this work only considered
the confidence (probabilities) of positive class (pain), gener-
ated by the classifier. We considered four different scenarios:
1) scenario 1: true positive - pain is classified as pain, 2)
scenario 2: true negative - neutral is classified as neutral, 3)
scenario 3: type 1 error - neutral is classified as pain, and 4)
scenario 4: type 2 error - pain is classified as neutral.

As it can be seen in Fig. 5a, the classifier produced high
confidence scores for frames with high TED scores, which was
expected as in our case study, high TED score indicates facial
pain expression. More concisely, for frames with TED scores



(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

Fig. 5: Model interpretation. The TED score vs. the confidence of pain classification model. Top row shows faces that correspond
to the scenario in the plot below (e.g., the 4 faces above (c), are neutral faces that were classified as pain - type 1 error).

at least 100, the classifier was 100% confident that frames
represent pain expression. It can also be observed in Fig. 5a
that the faces visually show a lot of pain expression, resulting
in high TED scores. Contrary to scenario 1, in scenario 2, the
classifier was expected to produce lower probability scores
(confidence) as samples belong to the neutral (negative) class
(probability of negative class = 1− probability of positive
class). In Fig. 5b, it can be observed that when TED scores
for the frames were low (e.g., ≤ 10), the confidence of the
classifier was also low (i.e., the classifier inferred with high
confidence that frames belonged to neutral class).

We also investigated the scenario in which the classifier
makes the incorrect decision. For instance, in scenario 3, the
model is expected to produce low probability for pain since
frames belong to neutral. As it can be seen in Figs. 4a and
4b, neutral frames are likely to have TED scores of around 6
(e1.8 ≈ 6). However, it can be seen in Fig. 5c that most neutral
frames misclassified as pain frames have a TED score of at
least 7. The interpretation is that the classifier confused those
neutral frames with very low-intensity pain frames. Finally, in
scenario 4, even though frames belong to pain, the expectation
from the classifier, in terms of confidence, is low since TED
scores for most of these frames are low (i.e., frames represent
pain with low expressiveness). As per the expectation, the
classifier produced low pain class probabilities for most of
these frames and, yet, ended up with incorrect prediction.

The incorrect prediction of pain can be summarized using
TED based interpretation as follows: the classifier could get
confused when expressiveness score for a given pain frame is
close (i.e., low-intensity pain) to a neutral frame; the confusion
was observed in scenarios 3 and 4. Further evidence can be
observed in Fig. 4 - for both VAS and OPI scales, the facial
expressiveness (TED scores) of low intensity pain samples
was similar to the TED scores of no pain (neutral) samples.
One interesting observation is that for one sample in Fig. 5d,
the disagreement between the TED score (25) and classifier
confidence (0%) is high, which demands further investigation
into TED, the classifier, and that specific sample. However,
for the majority of samples, we observed a strong agreement

between TED scores and classifier (see Fig. 5). It could be the
case that those frames were wrongly annotated by FACS coder,
which demands further investigation into the data. As you can
see TED based interpretation of classifiers could lead us to
build trustworthy and interpretable affect prediction models,
which is useful as TED contains domain knowledge from
psychology and affective computing [1], [15].

VI. DISCUSSION, LIMITATION, AND FUTURE DIRECTION

TED is a step towards alleviating the lack of quantified
emotional expression modeling in affective computing. Our
case study on spontaneous pain suggests that TED is capable
of estimating facial expressiveness, and its utilities have the
potential to improve the productivity of computing and ap-
plication domain experts. Using TED, domain experts could
inspect the relevant segments of data, which could boost their
productivity. For instance, in Fig. 2a, in the context of pain,
the relevant frames (moment of interest) are in between 60 to
120. Experts, such as a doctor, can select the subset of frames
in between [80, 120] such as 80, 100, 120, and inspect them
manually to assess a patient instead of inspecting the entire
sequence to speed up the inspection process. Recall that the
applications of TED are not limited to affect summarization
and model interpretation; as long as the video sequence
contains a human face and the context of the problem at hand
is aligned with affective computing (e.g., annotating sparse
temporal data), TED could be relevant and useful.

Affect summarization based on TED could augment the
rapid prototyping of an affective machine learning system,
and ensure quick exploration of large amounts of data. This is
essential as, in the era of big data, it is unrealistic to explore
data manually. This work demonstrated the capability of TED
to explore affect data along with gender, self-report, and ob-
server reports to extract insights from unstructured data. This
idea could be generalized to other demographic information
(e.g., race, culture, age), reports (e.g., expert’s opinion), and
context (e.g., medical procedure). For instance, TED can be
used to answer questions like for a given task T in context C,
how different, in terms of expressiveness, ethnic population P1



aged in between [O1, O2] is from ethnic population P2 aged in
between [O1, O2], and how is it associated to different forms
of affect reports? That would be useful to answer affective
data science questions more efficiently.

This work demonstrated how TED could be used to set
up expectation and to interpret predictive results which has a
major advantage, in the context of affective computing, over
existing explainable AI methods as TED incorporates domain
knowledge from psychology and affective computing [1], [15].
Even though experiments in this work were limited to pain
modeling, it is extendable to other affective modeling tasks
such as stress modeling [55]. In our future work, we intend to
explore even more challenging model interpretation settings to
test out the effectiveness of our approach given the necessity of
explainable AI in sensitive application domains like healthcare.

Predicted AU intensities are generally less accurate com-
pared to manually coded AU intensities [51], which results in a
limitation of TED as it depends on the quality of AU intensity
prediction models in the absence of manually coded AUs.
Although predicting AUs with high accuracy is still an open
challenge [51], TED is still able to measure the expressiveness
with minimal degradation. Another limitation is the lack of
large affect datasets with manual coded AUs; most datasets
contain a relatively small subset of manually coded AUs [3].
Considering this, we will collect a new, large-scale dataset with
manually coded AU intensities for each frame. We will explore
information theory, dynamic time warping, and optical flow
to compare against AU-based expressiveness. We will also
explore how TED can be used to measure the misalignment
between facial response and emotion.
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