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Abstract—True immersion of a player within a game can
only occur when the world simulated looks and behaves as
close to reality as possible. This implies that the game must
correctly read and understand, among other things, the player’s
focus, attitude towards the objects/persons in focus, gestures, and
speech. In this paper, we proposed a novel system that integrates
eye gaze estimation, head pose estimation, facial expression
recognition, speech recognition, and text-to-speech components
for use in real-time games. Both the eye gaze and head pose
components utilize underlying 3D models, and our novel head
pose estimation algorithm uniquely combines scene flow witha
generic head model. The facial expression recognition module
uses the Local Binary Patterns with Three Orthogonal Planes
(LBP-TOP) approach on the 2D shape index domain rather than
the pixel domain, resulting in improved classification. Oursystem
has also been extended to use a pan-tilt-zoom camera driven by
the Kinect, allowing us to track a moving player. A test game,
“Art Critic”, is also presented, which not only demonstrates the
utility of our system but also provides a template for player/NPC
(non-player character) interaction in a gaming context. The
player alters his/her view of the 3D world using head pose, looks
at paintings/NPCs using eye gaze, and makes an evaluation based
on the player’s expression and speech. The NPC “artist” will
respond with facial expression and synthetic speech based on its
personality. Both qualitative and quantitative evaluations of the
system are performed to illustrate the system’s effectiveness.

Index Terms—Gaze tracking, head pose estimation, expression
recognition, speech recognition, text-to-speech, gaminginterac-
tion.

I. I NTRODUCTION

T HE principal goal of many games is to immerse the
player in the world presented. When we encounter phe-

nomena in the real world, however, our responses are often
multifaceted, including our facial expression, body language,
head pose, eye gaze, and speech. With the advent of modern
game system inputs such as the Xbox Kinect [1] and the
PlayStation Move [2], the industry has extended the gamer’s
inputs beyond the canonical controllers of the past and opened
up the possibility of games responding to the visual and audio
signals we send. In particular, a wealth of information can
be found in the player’s head pose and eye gaze. Once a
region of interest is fixed upon, the player’s facial expression
potentially gives us the player’s opinion of the object or person
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Fig. 1. The “Art Critic” game with multisignal vision and speech interface.

in focus. Of course, the player’s speech should also be taken
into account [3], [4], as it is perhaps the most direct form
of human communication. With the exception of the Kinect
system interface, however, automatic speech recognition and
analysis are infrequently used in a gaming context. Many
modern games, especially those within the role-playing and
first-person shooter genres, attempt to simulate person-to-
person interaction and communication as a critical part of the
experience. One problem, however, is that the player generally
feels somewhat disconnected from his/her character, sincethe
player invariably chooses what they will say and how they
will say it from a list of options. Worse, in some games the
player then watches and listens to their own character make
the response chosen. We believe that allowing the player to
be more involved in the experience will increase immersion
within the game and, consequently, make the game more
enjoyable. It falls, then, to the next generation of games to
read and interpret all channels of human communication and
to respond appropriately. However, to the best of the authors’
knowledge, there is no game or gaming system to date that
incorporates head pose estimation, eye gaze estimation, fa-
cial expression recognition, speech recognition, and synthetic
speech generation all together as part of the player’s interactive
experience. Therefore, we propose a multisignal vision and
speech system to read, recognize, and respond to all these
channels in a gaming context.

The automatic interpretation of data from any of these
channels remains challenging. The overwhelming majority of
eye gaze estimation approaches rely on “glints” – reflections
of light off the cornea [5]. However, eye gaze may also
be determined from pupil or iris contours [6], ellipse-fitting
approaches [7], [8], the distance between the iris center and
certain reference points (e.g., the eye corners) [9], [10],
eye region segmentation and pixel-wise matching with 3D
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Fig. 2. Overview of multisignal vision and speech interaction system and application.

rendered eyeball models [11], [12], or even the reflection of
the screen off the cornea [13]. Nonetheless, eye tracking in
regular, non-infrared 2D imagery is still a difficult problem.

Some previous work shows successful head pose estimation
based on a depth-aware camera [14] [15], multiple cameras
[16], and a single camera [17], but accurate, continuous, and
real-time head pose estimation remains a challenge, particu-
larly with estimation of large head rotations.

There has been work done to incorporate facial expression
recognition by itself into games, e.g., a multiplayer online
game using Gabor wavelets and SVM for expression classifi-
cation [18] and an HMM-based five expression recognition
system for a network game [19]. Expression synthesis has
been utilized in “serious games” [20] and storytelling sys-
tems [21], while both expression recognition and synthesis
have been used for avatar synthesis [22], multimodal input
systems [23], non-player character (NPC) behavior/personality
customization [24], NPC emotional models [25], and virtual
agents with gaze behavior [26]. However, the approaches and
systems in this vein do not incorporate eye gaze, head pose,
facial expression, speech information, and text-to-speech for
interacting with the game world and its virtual inhabitantsas
we do.

Motivated by recent work [27], we propose a novel system
with components performing eye gaze estimation, head pose
estimation, facial expression recognition, speech recognition,
and text-to-speech synthesis for use in real-time games. Based
on our previous work [27], we utilize a 3D model of the eye

for eye gaze estimation. A novel, subject-independent head
pose estimation algorithm incorporating scene flow [28] and
a generic 3D model is also presented. An active appearance
model (AAM) based approach [29] is applied to detect and
track 10 feature points on the player’s 2D head images,
and the head pose is then estimated using prior knowledge
of the head shape and the geometric relationship between
the 2D images and a 3D generic model. The expression
recognition module leverages a unique 2D shape index [30]
dynamic texture approach based on the Local Binary Patterns
with Three Orthogonal Planes (LBP-TOP) algorithm [31];
user-specific templates are employed for each of the seven
prototypic expressions (Angry, Disgust, Fear, Happy, Sad,
Surprise, and Neutral). The camera images for the vision-based
components can be from a simple webcam or from a pan-tilt-
zoom camera driven by the Kinect SDK to focus in on the
player’s head. CMU’s Pocketsphinx speech recognition library
[32] is employed to recognize words and phrases spoken by
the player, and the Festival text-to-speech library [33] allows
NPCs to talk back to the player. To illustrate the power of
such a system, a gaming application combining all of these
components is presented. This game, “Art Critic” (Fig. 1),
allows the player to navigate a 3D virtual art gallery and make
evaluations of the paintings therein. Head pose changes are
recognized and used to alter the player’s view. Incorporating
both head pose and eye gaze, the player’s point of focus is
tracked; in particular, the system checks whether the player
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has looked or is looking at a given painting in the gallery.
An NPC “artist” stands next to its work. The player looks
at the NPC and engages it in conversation. Then, when the
player looks at either the painting or the artist, makes a facial
expression, and speaks his/her evaluation of the painting (e.g.,
“good”, “awful”, etc.), the “artist” will react with both facial
expression and speech based on the player’s evaluation as
well as on the NPC’s personality. The strength of the verbal
component of the evaluation (e.g., “good” vs. “amazing”) will
influence the intensity of the artist’s response. Moreover,if the
player has not even looked at the painting, the artist’s reaction
will be different. We perform a quantitative evaluation on the
system in terms of facial expression and painting evaluation
classification. We also conduct a qualitative evaluation through
a questionnaire given to players asking about the experience of
the game and how each component affected that experience.

Using multiple communication channels allows for more
natural and comfortable interaction within the game. In con-
trast, a single-channel system would have to either assign
certain functionality to more conventional input devices (i.e.,
mouse and keyboard) or make a potentially awkward ges-
ture/control mapping scheme, such as having eye gaze control
the player’s view or having expression linked to movement
commands. Moreover, our system makes intelligent use of all
the important information from the face and head, thus forming
a more complete interaction system rather than a conventional
one with certain vision technologies attached as a bonus. Even
though one could argue that certain information need only
come from one channel (e.g., the overall evaluation could have
come from the facial expression or the speech alone), using
multiple channels allows for different combinations of signals,
giving us complex, nuanced information from the player.

Our principal contributions are 1) a novel head pose estima-
tion approach that couples scene flow with a generic 3D head
model, 2) a unique, real-time system that makes use of head
pose, eye gaze, facial expression, speech, and text-to-speech
for intuitive, natural NPC and virtual world interaction ina
gaming context, 3) exploration of the use of the LBP-TOP
approach on the 2D shape index domain for improved facial
expression recognition, and 4) an efficient implementation
suitable for use in games. Fig. 2 shows an overview of our
system and our application.

The paper is organized as follows: Section II presents our
head pose estimation algorithm, Section III describes our eye
gaze estimation approach, Section IV elaborates on our facial
expression recognition component, Section V briefly discusses
the speech recognition and text-to-speech components, Section
VI introduces our game application “Art Critic” and presents
our system evaluation results, and concluding remarks and
discussion are given in Section VII.

II. H EAD POSEESTIMATION

We propose a novel head pose estimation approach that
applies feature-based scene flow coupled with a 3D generic
head model. This component uses a 2D video stream to
determine head direction and position. First, the Viola-Jones
approach [34] is applied to detect the frontal face. After the

Fig. 3. Kinect and active camera setup.

(a) (b)

Fig. 4. Feature points (a) on the 2D face and (b) on the 3D generic face
model.

face is detected, the Active Appearance Model technique [29]
is employed to detect and track predefined feature points on
the face. The feature point coordinates in the 2D images are
scaled and mapped to a 3D generic head model (described in
Section II.B). Finally, based on the correspondence between
the feature points, the 3D rotation angles can be calculated
from the 2D coordinates by the so-called scene flow approach
[28].

A. Face Region and Feature Detection

We have two possible camera setups. The first is a webcam
sitting on top of a monitor, an arrangement ideal for computer
gaming. Alternatively, the Kinect in conjunction with an
active, pan-tilt-zoom camera may be used, which is more
appropriate for console system games. Fig. 3 illustrates this
dual-camera system.

The Kinect SDK provides functionality for body skeleton
tracking; we use the 3D position of the head from this skeleton
to control an active pan-tilt-zoom camera to rotate and zoom
into the found head. The active camera (SONY SNC-RZ30N)
can pan±170◦ and tilt from−90◦ to +25◦ with a 25× optical
zoom lens. Thus, the system obtains a close-up view of the
face. Please note, however, that the video from the active
camera alone is used by our computer-vision-based system
components, including our head pose estimation algorithm.
The 3D position of the head from the Kinect is only used to
drive the active camera, and otherwise it is not used directly in
any of our system components. Consequently, the Kinect is not
required for our system; as long as the player remains within
the view of the camera (whether it is a webcam or a pan-tilt-
zoom camera), our system can still be run. However, allowing
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(a) (b)

Fig. 5. The side view and top view of the generic model with rotation radius.

Fig. 6. The diagram of scene flow.

the Kinect to direct the camera permits the player to move
within a typical console-gaming space (such as a living room).
The reason we do not use imagery from the Kinect directly in
our estimation algorithms is that the resolution is too low for a
player moving around in a typical console-gaming space; that
is, the face image would be too small. As such, we instead
take advantage of the higher resolution a pan-tilt-zoom camera
can provide, while leveraging the Kinect’s ability to coarsely
locate a player in the room.

Whether we use the video stream from a webcam or from
an active camera, we refine the face area by applying an
appearance-based technique based on the work by Viola and
Jones [34] for face detection. Once the face area is identified,
we use the classic active appearance model (AAM) approach
[29] to detect and track the feature points on the face. A set
of landmark images are used to create the training set. We
defined ten 2D feature points on the face image, as shown in
Fig. 4(a). These form a sort of horseshoe shape on the face
and include the top points of the left and right eyebrows, the
outer corners of the left and right eyes, four points on the
cheeks, and the left and right corners of the mouth. These 2D
landmarks are represented as a vector for training the shape
and texture models by PCA.

B. 2D to 3D Coordinate Correspondences

In feature-based head pose estimation, the key step is to
establish a set of geometric 2D-to-3D correspondences by
matching 2D features to the 3D model features. The 3D
generic model and the feature coordinates of the first frame of
the 2D video sequence can be scaled and aligned by their scale
factorm. This factorm is calculated by the distance between
the feature points, such as the 2D distance∆u between the
outer corners of the left and right eyes on the frontal face
image and the corresponding 3D distance∆x on the generic
model.

C. Head Pose Estimation Based on Feature Point Scene Flow

Similar to optical flow which is the two-dimensional motion
of points in an image, scene flow is the three-dimensional
motion of points in the 3D world space [28]. In theory, scene
flow can be estimated by a complete knowledge of the surface
geometry or by knowing image correspondences from multiple
cameras [28]. It is impossible to estimate the 3D scene flow
based only on one camera. In order to resolve this problem
for our application, some restrictions and assumptions on the
head rotation should be implied: in our case, we assume that
head rotation and head translation do not occur simultaneously.
Such an assumption is reasonable since, in practice, people
seldom perform head rotation when their bodies move in
translation a great deal.

We assume each feature point is moving on a surface which
has a functionf(x, y, z; t) = 0. Each feature point is rotated
around the axis in the middle of the neck. Fig. 5 shows the
origin and one feature point on the side view and top view
of our generic head model. As shown in Fig. 6, the image
point (u, v) is the projection of the 3D point(x, y, z) by a
projection matrixP . Thus, the feature point(u, v; t) on a video
sequence is the result of the projection of the corresponding
feature point on the 3D surfacef at the 3D point(x, y, z; t)
of the 3D motion object. Therefore, a scene flow of a pointT

in the 3D space generates an optical flow of the corresponding
point in the 2D image domain.

Let x(t) = (x, y, z; t) be the 3D path of a feature point on
the face surface, and letu(t) = (u, v; t) be the corresponding
feature point in the image. As the feature pointx(t) moves
with head rotation, we assume that its rotation radiusr =
r(x(t), t) remains constant; that is

dr

dt
= 0 (1)

The rotation radius of feature points is calculated by

r =
√

x2 + y2 + z2 (2)

Equation 3 describes how the 3D coordinates of the feature
points are estimated:
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(a) Yaw (b) Pitch (c) Roll

Fig. 7. Mean and standard deviation of estimates for yaw, pitch, and roll rotations for our approach and POSIT with the webcam tests (units in degrees).
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where(xn, yn, zn) is the estimated coordinate of the feature
point of framen, (xo, yo, zo) is the original coordinate of the
generic model,i is the index of the frame number, andn is
the total number of frames since initialization.∆xi,∆yi,∆zi
are calculated by:
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We define four feature points on the 3D generic face model
to calculate the normal vector. These are the outer corners of
left and right eyes, and the left and right corners of mouth,
as illustrated in Fig. 4(b). Note that these four points on the
3D generic model are a subset of the ten 2D points described
earlier. A triangle is formed by the two outer corners of the
left and right eyes and the middle point of the two mouth
corners. The normal vector of such a triangle is relatively
expression invariant, thus representing the pose orientation of a
head accordingly. Although the mouth corners are sensitiveto
facial expression, we use the average value of the two mouth
corners. Normally, when people perform facial expressions,
the mouth corners move symmetrically. Even if the AAM
fails to detect the exact location of the mouth corners due
to expression changes, using the average of the two mouth
points means the head pose estimation error caused by facial
expression would be fairly small.

To address the issue of scene flow drift, we reinitialize the
(xo, yo, zo) and radiusr for each point as well as the scale
factorm if the subject looks straight towards the camera. This
is determined by comparing the angles of a triangle formed
from the outer eye corner points and one of the mouth corner
points with the corresponding triangle from the initialization
frame. Fig. 4(a) shows an example triangle.α, β, andγ are the
angles to be used for the drift reduction. Based on the property
of similar triangles, if the corresponding angles between the
first frame and the current subsequent frame are congruent, the

Fig. 8. Real-time head pose tests; (first row) tests on a Logitech webcam
with pose vector given by red line; (second row) tests on the active camera
with pose vector given by green line. The estimated head poses are verified
by the follow-up rotation of a generic model driven by the pose parameters
obtained from the live subjects.

two triangles must be similar, and we reinitialize the model
data.

D. Head Pose Evaluation

1) Test on video sequences captured from 2D cameras:
As mentioned earlier, our system can be set up with a regular
webcam or with an active pan-tilt-zoom camera. The first row
of Fig. 8 shows some examples from a Logitech webcam,
while the second row contains results from the pan-tilt-zoom
camera. The system works with a resolution of 640×480 in
real time. The green dots are the tracked feature points on
the face; the estimated head pose vector is shown by a red
line in the top row of Fig. 8 and a green line in the bottom
row of Fig. 8. We have also transferred the estimated pose to
the 3D generic model to visualize the head orientation. The
generic model rotates in real time along with the subject’s
head. Subjectively, our system works fine in different imaging
conditions, including when the face is partially occluded and
when the subject is wearing eye glasses.

In order to objectively evaluate the accuracy of our head
pose estimation algorithm, it is necessary to obtain the ground
truth for the head poses in the test videos. To do so, we affix a
laser pointer to each subject’s forehead. This allows the subject
to locate precisely what they are looking at in real time. In
our experiments, we tested the performance on five subjects
from our lab. The range of yaw estimation is [−40◦, 40◦], in
which the right side is positive. The range of pitch estimation
is [−30◦, 30◦], in which up is positive. The range of roll
estimation is [−30◦, 30◦], in which the right side is positive.
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(a) (b) (c)

Fig. 9. Test on 3D dynamic video sequences with spontaneous head
movements and expressions.

The charts in Fig. 7 show the average estimate and standard
deviation of yaw, pitch, and roll, respectively. The average
of the absolute value error for yaw is 4.83◦, for pitch is
3.36◦, and for roll is 1.34◦. We also present the results from
using the Pose from Orthography and Scaling with Iterations
(POSIT) head pose estimation approach [35]. As one can
see from Fig. 7, our approach performs better on average.
The estimated results demonstrate the effectiveness of our
pose estimation approach with 2D cameras. (Please see the
supplemental material for a video demo.)

2) Test on video sequences captured from 3D cameras:We
have also tested our algorithm using video textures from our
3D dynamic model database [36]. The 3D model sequences
were captured by theDi3D system [37]. We tested on 3D video
sequences of 40 subjects with spontaneous head movements
and various expressions.

In order to evaluate the accuracy of our head pose estimation
algorithm, we generated comparison model data from the 3D
model sequences directly. Based on the 3D tracking software
provided by theDi3D imaging system [37], we are able to
track feature points across the 3D model sequences. This
feature point tracker relies on the 3D mesh data, and ergo
it is more accurate and stable than a 2D-based approach. Fig.
9(a) shows the four feature points defined and tracked on the
3D model surfaces. Based on those 3D feature points, we used
the same approach described earlier (Fig. 4(b)) to generatethe
head orientation vector, giving us a reference pose orientation
for each frame of each video to use for comparison.

Given the comparison head pose data, we estimate the dif-
ference between the estimated head poses from video textures
and the comparison poses from the corresponding 3D models.
Fig. 9 shows one example of a 3D model sequence with
tracked feature points. Fig. 9(a) is the captured 3D model, Fig.
9(b) is the corresponding texture, and Fig. 9(c) is the generic
model rotated by the estimated head orientation from the
textures. Table I shows the average errors of pose estimation
from 4,279 frames of the 3D video database in terms of pitch,
yaw, and roll, respectively. We again compare our work to
results from POSIT [35], and our approach does noticeably
better.

The experimental results show that errors occur more often
with yaw rotation than with other rotations. The spontaneous
facial behavior data does include some cases of the users
rotating their heads while performing translation in thex axis.
As a result, this translation with rotation brings some error into
our yaw estimation results. Overall, however, our results are

TABLE I
AVERAGE ERROR OF HEAD POSE ESTIMATES ON3D VIDEO SEQUENCES

Average Error (in degrees)
Method Pitch Yaw Roll

POSIT [35] 6.7 7.9 2.1
Our Method 3.8 6.2 1.4

Fig. 10. (First column) 3D rendered eyeballs with white lines indicating
optical gaze direction; (second column) original 2D image used for 3D iris
detection; (third column) 3D eyeballs rendered with the iris looking into the
camera; (fourth column) iris contours, shown as red dots between the iris and
the rest of the eyeball, found on rendered eyeball image.

still promising. POSIT relies on all the feature points of face to
make its pose estimate; as such, any non-neutral expressionon
the face can greatly influence the estimation results. Moreover,
when the face rotates, some feature points on the edge of the
model can be less reliable and thus affect the POSIT results.
Our approach relies on fewer points that are more robust to
expression changes. Thus, this experiment demonstrates that
our algorithm is in general applicable to spontaneous head
movements with various facial expressions.

III. E YE GAZE ESTIMATION

A. Iris Detection and Contour Extraction

Based on existing work [27], we determine the current
eyeball positions by offsets from the 3D head pose and posi-
tion. These offsets are calculated from a calibration procedure
which is described in [27]. The eye detection algorithm maps
the current camera image as a 2D texture onto the current
positions of the 3D eyeballs, rotates the eyeballs in pitch
and yaw, renders the rotated eyeballs, and picks the rotated
eyeballs that look most like the user is looking into the camera.
This is evaluated by 1) computing the absolute pixel intensity
difference of the center region of each rendered eyeball from
a dark, circular template and 2) circle-fitting on the gradient
magnitude image. We use CUDA [38] to determine the scores
for multiple eyeball images simultaneously. Once the best
eyeball rotations and scales are determined, the eyeballs are
rotated back and projected into image space, giving us our 2D
iris centers. The first column of Fig. 10 shows some sample
3D eyeballs rendered at different angles. For iris contour
extraction, we effectively shoot rays outwards from the center
of each optimally-rendered eyeball image, similar to [39].
Initially, the points along the rays with the highest dark-to-
light gradient value going outwards within a certain radius
range are chosen, and then all points falling outside of a
more restrictive range are eliminated to remove eyelid and
specular highlight points. The right-most column of Fig. 10
shows some examples of iris contours. A GLSL pixel shader
[40] is leveraged here to make the contour extraction more
efficient.

To eliminate eyelid points, the mapped iris contour points
are rotated in line with the head pose direction and iteratively
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Fig. 11. Sample gaze results from different subjects.

grouped until a collection that fits a plane parallel to the head
posex axis and going through the eyeball center is found. Two
such “eyelid” planes are found, one for the upper and one for
the lower eyelid. Contour points outside of or to close to the
eyelids are eliminated, and the entire eyelid-finding procedure
is performed twice for each eyelid on each eye.

B. Gaze Estimation

Each 2D contour point is converted to a 3D world vector,
intersected with the current eyeball sphere, converted to a
vector from the eyeball center, and normalized to give us an
“iris contour vector”Ci. It is assumed we also have the iris
radius, stored as an expected dot productd between the optical
axisG and each contour vectorCi. Therefore, to estimate the
optical axisG, one solves a system of linear equations as
defined in [27]. If we takeV to be the normalized vector
from the eyeball center to the iris center point mapped onto
the eyeball surface, the basic idea is to find each eye’s optical
axisG such that 1) it is parallel toV and 2) the dot product
of G and eachCi is d. Note thatd, V , and the constant 1
are repeated in their respective matricesN times, once for
each contour vector. Doing so gives equal weight to our two
constraints. OnceG is found, it is normalized. To get the visual
axis, a fovea offset computed during the calibration procedure
is used. The fovea offset is rotated based on the rotation angles
of the optical axisG. The optical axis is then intersected with
the eyeball sphere to get a new estimate for the 3D iris center,
and the normalized vector from the fovea to this new iris center
is the final gaze direction for the given eye.

The procedure above is performed for each eye indepen-
dently. Then, the averages of the two foveae and the visual
axes are used as the final starting point and gaze direction,
respectively. Assuming the screen’s 3D position, size, and
orientation are already known, a simple ray-plane intersection
gives us the 2D gaze point of regard.

Fig. 11 shows some sample gaze estimation results. (Please
see the supplemental material for a video demo.)

C. Eye Gaze Evaluation

We performed a real-time gaze and point-of-regard estima-
tion experiment with a webcam wherein each user was asked
to look at 12 gaze markers on the screen (effectively, the center
of each brick in a 3×4 grid, as shown in Fig. 12(a)). The
user focused on each marker for 2-4 seconds. We recorded
the angular error, which is measured as the angle between
the estimated gaze direction vector and the vector from the
gaze starting point to the target point. We also recorded the

(a) (b)

Fig. 12. (a) Gaze test grid. Markers glow white when active, box becomes
light gray when eye cursor enters region. Eye gaze cursor is the green
diamond. The numbers are drawn here for clarity but were not drawn during
the test. (b) Example of redrawn gaze points from one of our tests (the black
border around the gaze points is the boundary of the screen region).

Fig. 13. Sample uniform LBP feature with 8 samples and radiusof 3.

“hit percentage,” which refers to how frequently the cursor
was within the target block. Please note that a point going
past the edge of the screen was still considered a “hit” on
the gaze target block closest to the gaze point. Given our
application, this is reasonable since it is assumed the user
is looking somewhere on the screen while using the system.
With 4 subjects, the overall angular error was 5.953◦, and the
average hit percentage was 90.54%. The error is relatively low
for a natural light eye gaze estimation approach [5].

IV. FACIAL EXPRESSIONRECOGNITION

A. 2D Shape Index Based Dynamic Textures

Dynamic textures (DT) encode texture information across
space and time. In this case, these textures are constructed
with concatenated Local Binary Pattern histograms from Three
Orthogonal Planes (LBP-TOP) [31]. Basically, for a given
image sequence, the LBP histogram for the middle image
in the time sequence is computed to give us theXY plane
histogram. With theX coordinate set to its center value, an
“image” plane is constructed with all variations ofY andT

(time) to give us theY T plane, and the LBP histogram is
extracted from that as well. A similar process is performed for
theXT plane. The histograms for each plane are normalized
individually, and the concatenated histograms describe the
texture in three dimensions. To reduce histogram size, we use
only the uniform LBP features [31], with sample counts of
8 and radii of 3 for all dimensions. Fig. 13 shows a sample
uniform LBP feature with 8 samples and radii of 3 inx and
y.

For facial expression recognition, the head position is first
determined. Then, the face image is scaled based on the
2D eyeball centers. The image is then broken up into 9 by
8 overlapping blocks with an overlap ratio of 70%; each
block has its own dynamic texture (DT) histogram. All DT
block histograms are concatenated together to form one feature
vector describing the entire face region. Every frame, a time
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Fig. 14. Subject (top row) and NPC (bottom row) expressions from left to
right: Neutral, Angry, Disgust, Fear, Happy, Sad, Surprise.

Fig. 15. Nine well-known shape types and their locations on the SI scale
[30].

slice of the last 30 frames is used for classification. Note,
however, that we differ from [31] in three ways in order
to improve the recognition performance. Firstly, the system
extracts the DT histogram for each user’s expression and saves
it as a template. For each new frame’s DT histogram, it is
compared to each template using the log-likelihood statistic:

L(T,M) = −
B
∑

b=1

Tb logMb (5)

whereB is the number of bins, andTb andMb correspond to
the sample and model probabilities at binb, respectively. IfMb

equals zero, we add nothing to the entropy to avoid unfairly
penalizing vectors that contain some zero components in their
model probability vectors. When the system starts and the
subject’s face is found, the LBP histogram for a single frame
is also extracted, and the nearest match is found in a database
of known subjects. If the subject confirms that they are the
match found, the user’s expression histograms and eye gaze
calibration data are loaded. Otherwise, the system prompts
for the user’s name. The user must then perform each of the
seven prototypic expressions (Angry, Disgust, Fear, Happy,
Sad, Surprise, and Neutral), and the system will record the
templates for that specific user. When the application is closed,
the new subject-specific data will be saved and can be reloaded
in the future. Secondly, due to the good characterization of
facial expressions using topographic features [41], the 2D
shape index images are computed as input into the LBP-
TOP algorithm. Another motivation is that shape index images
will be relatively robust to different lighting conditions. One
shape index image is generated per frame. Thirdly, we have
found that, in practice, having the user continue to perform
the expression through the entire recorded sequence achieves
more stable performance. The top row of Fig. 14 shows each
of the expressions performed.

The shape index image is computed as follows: if the
grayscale image is treated like a 3D height map, the local
neighborhood of each pixel can be fitted to a cubic polynomial
as described in [42]. The principal curvature directions and
magnitudes can be found from the Weingarten matrix formed

Fig. 16. Grayscale and shape index images for each expression.

Fig. 17. Shape index neighborhood size vs. accuracy on BU-4DFE test.

from the cubic polynomial [42]. The shape index of a given
point describes the nature of the area around that point [30].
Equation 6 demonstrates how to compute the shape index
around a pointp:

SI(p) =
1

2
−

1

π
arctan

κ1(p) + κ2(p)

κ1(p)− κ2(p)
(6)

whereκ1 andκ2 are the principal curvatures of the surface,
with κ1 ≥ κ2 [30]. Note that thearctan function in this
equation returns an angle in radians. The shape index values
are in the range [0, 1]; these values can in turn can be scaled
to the range [0, 255] and thus treated as another image. This
image can be used instead of the original face image in our
system. Fig. 15 shows the shape index scale with some well-
known shape types, while Fig. 16 shows some example shape
index images for each expression.

To ensure performance acceptable for gaming, we adopt
three strategies. First, both the shape index computation and
LBP extraction stages are performed for each pixel in CUDA
[38]. Second, the LBP features for the entireXY plane are
computed, and the correct LBP data is copied to each of the
blocks. Third, for theXT and Y T planes, only the LBP
features for the new incoming data (that is, the part of each
plane with the most recentt coordinate) are computed from
each frame, and the histogram is updated accordingly.

B. Facial Expression Recognition Evaluation

We evaluate the expression recognition performance on the
BU-4DFE database [43]. We chose 24 subjects and marked
the onset, peak, offset, and ending frames of each expression
sequence. On average, each expression video is about 100
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Fig. 18. Shape index neighborhood size vs. AUC on BU-4DFE test.

TABLE II
BU-4DFE FACIAL EXPRESSIONCLASSIFICATION RESULTS USINGSHAPE

INDEX IMAGES WITH NEIGHBORHOODSIZE 13× 13 (ACC. = ACCURACY,
PRE. = PRECISION, REC. = RECALL , F1 = F1 SCORE, AUC = AREA

UNDER RECEIVEROPERATINGCHARACTERISTIC CURVE, AND W. AVG. =
WEIGHTED AVERAGE)

Class Acc. Pre. Rec. F1 AUC

Angry 1 1 1 1 0.999
Disgust 0.958 1 0.958 0.979 0.995

Fear 1 0.923 1 0.96 0.997
Happy 1 0.96 1 0.980 1

Sad 1 0.889 1 0.941 0.999
Surprise 1 1 1 1 1
Neutral 0.792 1 0.792 0.884 0.946
W. Avg. 0.964 0.967 0.964 0.963 0.991

frames long. Each subject was chosen based on two criteria.
First, each of the subject’s expression sequences had to contain
a minimum of 45 frames between the peak and ending frames.
The first 30 frames are used as the training sequence for the
peak expression, and the last 30 frames are used for the testing
sequence. This ensures that the training and testing sequences
would only overlap at most by half. Second, each subject
had to have at least two sequences with a minimum of 5
Neutral frames each. The expression videos do not generally
have Neutral segments that are 30 frames in length. Therefore,
the Neutral training and testing sequences were created by
going backwards and forwards through each 5-frame Neutral
sequence until 30 frames were filled. Thus, we had a total of
5,040 frames for training and the same number for testing.
The size of each face image was scaled to160× 240 pixels.

We compute the accuracy, precision, recall, and F1 score
for each class. Weighted averages are used for the overall
statistics. Accuracy refers to the number of correctly-classified
members of a given class (true-positives) over the total number
of members in the class. Precision is defined as the number of
true-positives for a class over the number of samples classified
as that class (in other words, both true-positives and false-
positives). Recall for a class is the number of true-positives
over the number of true-positives and false-negatives (thelatter
being samples incorrectly classified as not belonging to the
given class). F1 score is the weighted average of precision
and recall, computed as2 · precision·recall

precision+recall
.

In addition to these statistics, we also compute the Area

TABLE III
BU-4DFE FACIAL EXPRESSIONCONFUSIONTABLE USING SHAPE INDEX

IMAGES WITH NEIGHBORHOODSIZE 13× 13

Classified as→ A
ng

ry
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is
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r
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e
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al

Angry 24 0 0 0 0 0 0
Disgust 0 23 0 1 0 0 0

Fear 0 0 24 0 0 0 0
Happy 0 0 0 24 0 0 0

Sad 0 0 0 0 24 0 0
Surprise 0 0 0 0 0 24 0
Neutral 0 0 2 0 3 0 19

TABLE IV
BU-4DFE FACIAL EXPRESSIONCLASSIFICATION RESULTS USING

REGULAR GRAYSCALE IMAGES

Class Acc. Pre. Rec. F1 AUC

Angry 1 0.923 1 0.96 0.999
Disgust 1 0.96 1 0.980 1

Fear 1 0.828 1 0.906 0.994
Happy 1 1 1 1 1

Sad 0.958 0.885 0.958 0.92 0.992
Surprise 0.958 1 0.958 0.979 0.992
Neutral 0.625 1 0.625 0.769 0.964
W. Avg. 0.935 0.942 0.935 0.930 0.992

Under Receiver Operating Characteristic curve (AUC) scores
per class and use a weighted average of the scores to get the
final AUC score. The rationale for computing these scores is
that they give us theoretical upper-bounds on the classification
performance. To ensure that the log-likelihood scores per
class were comparable across different samples, the scoresare
normalized for each sample.

Tests were conducted using LBP-TOP on shape index im-
ages generated using different neighborhood sizes (i.e., varying
N when the neighborhood around each pixel wasN × N in
size). Fig. 17 illustrates the expression recognition accuracy
as the neighborhood size varies, while Fig. 18 shows the
expression recognition AUC as the neighborhood size varies.

As the chart shows, our best results in terms of accuracy
were with a neighborhood size of13 × 13, giving us an
accuracy of 96.4% and an AUC score of 0.991. Table II shows
the classification results using the shape index images witha
13 × 13 neighborhood. Table III is the confusion matrix for
the best shape index results.

The results for each class are fairly high, and the accuracy
for Neutral is acceptable. One might note the drop in accuracy
after N = 15 and the drop in AUC score afterN = 11.
The reason for this is that, if the shape index neighborhood
becomes too large compared to the image size, important
information begins to get smoothed over because of the
polynomial fitting. That is, after a certain point, the polynomial
approximation of the face surface becomes less accurate and
begins to filter out relevant data as well as noise.

For comparison, we also performed a test using LBP-TOP
on regular grayscale images; the results are given in Table
IV. Our accuracy results using shape index imagery are about
3% higher, mostly due to a decided drop in the classification
accuracy of Neutral using regular grayscale imagery. Also,our
AUC results are comparable. Indeed, the highest AUC score
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Fig. 19. Examples of grayscale and shape index images for correctly-
classified samples from BU-4DFE using shape index imagery.

Fig. 20. Grayscale and shape index images for the misclassified samples
from BU-4DFE using shape index imagery.

possible using shape index imagery was 0.994 with neighbor-
hood size11 × 11, although the corresponding accuracy is
lower under those conditions.

Overall, these results demonstrate that this approach is
appropriate for our system. Please see Fig. 19 for examples
of correctly classified samples from BU-4DFE using shape
index images. Fig. 20 shows the misclassified samples using
shape index imagery. Almost all of the misclassified cases
are Neutral; however, it can be observed that some of them
do not look entirely expressionless, particularly the samples
misclassified as Sad.

V. SPEECHRECOGNITION AND TEXT-TO-SPEECH

To recognize the user’s verbal evaluations and to allow the
system to respond with speech, our system has both speech
recognition and text-to-speech components. The speech recog-
nition module makes use of CMU’s Pocketsphinx software
[32], and the text-to-speech module uses the Festival library
[33]. The speech component starts listening as soon as the user
begins speaking and stops when the user is silent for more than
1 second. It then extracts Mel-frequency cepstral coefficients
(MFCCs) [44] to form the feature vector for the given audio
sequence. Given the feature vector, an acoustic model is used
to find the “senones” (effectively a complex phone or class
of sounds), while a dictionary maps these senones to words.
A language model can help filter out highly improbable word
sequences [32].

For our application, our dictionary includes 5 words:
“hello”, “awful”, “bad”, “good”, and “amazing”. Please note,
however, that our dictionary can be very easily expanded.
Also, the existing module already returns a transcription of
the complete spoken phrase; thus, future work could involve
extending our recognition system to interpret full sentences.

Fig. 21. “Art Critic” game application in action.

The speech recognition module runs concurrently with the
main program as a separate thread, allowing simultaneous
recognition of all signals. It is only paused when the NPC
is speaking (to prevent a sort of feedback loop wherein NPC
speech is mistaken for player speech).

VI. VALIDATION THROUGH A GAMING APPLICATION:
“A RT CRITIC”

A. Application Overview

To demonstrate the utility of our complete real-time system
in a gaming context, we have developed a game wherein the
player is an art critic; Fig. 21 shows the application in action.
The player can walk around an art gallery with paintings on
the walls and NPC “artists” standing next to each painting.
The player’s head pose is used to alter his/her view: when the
head’s yaw or pitch is past a certain threshold, the player’s
view rotates accordingly. Eye gaze is also tracked, and the
system notes not only whether the player is currently looking
at a given NPC or painting but also how long the player
has looked at each painting. If the player’s distance from a
painting exceeds a certain threshold, however, the system will
intentionally not record their gaze behavior, since the player
is too far away to really see the painting properly. The frame-
to-frame facial expression is stored in a history ofN frames
(whereN can be up to 60), and the current facial expression
is the expression with the highest number of instances in
the frame history (i.e., a majority voting scheme). The eye
gaze target is handled in the same fashion. This increases the
robustness of the system overall.

The player then looks at an NPC and says “Hello”. The NPC
responds and inquires whether the player has seen its work (if
the player has already looked at the painting for some time,
the NPC will instead note that the player has been looking
at its painting). The player then looks at either the NPC or
its painting, makes a facial expression, and gives a one-word
evaluation (“good”, “awful”, etc.). Different combinations of
facial expressions and speech will be interpreted as different
overall evaluations, as shown in Table V(a). For example, an
Angry expression with the word “bad” will simply indicate
Dislike; however, a Happy expression with the word “bad”
will be viewed as Mocking. Moreover, different words indicate
different intensities (e.g., “awful” is stronger than “bad”). The
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(a) (b) (c)

Fig. 22. “Art Critic” game NPC artists. (a) The Cheerful artist; (b) the Miserable artist; (c) the Cowardly artist.

TABLE V
(A) PLAYER EVALUATIONS , AND (B) NPC’S EMOTIONAL RESPONSE BASED ONNPC’S PERSONALITY AND PLAYER ’ S EVALUATION (RELATIVE

INTENSITIES SHOWN; ABSENCE OF INTENSITY LABEL INDICATES STRONG INTENSITY; “EVAL .” REFERS TOPLAYER ’ S EVALUATION , WHILE “NPC PER.”
REFERS TO THENPC’S PERSONALITY; “W EAK “ < “M ILD ” IN TERMS OF INTENSITY.)

(a) Player Evaluations
`
`
`
`
`
`
`
`
`

Expression
Speech

“bad/awful” “good/amazing”

Angry/Disgust Dislike Envy
Fear Polite Dislike Like

Happy Mocking Like
Sad Polite Dislike Like

Surprise Shock Awe
Neutral Dislike Like

(b) NPC’s Emotional Response
`
`
`
`
`
`
`
`
`

Eval.
NPC Per.

Cheerful Miserable Cowardly

Dislike Neutral Sad Sad
Mocking (Mild) Angry (Mild) Angry (Mild) Fear

Polite Dislike (Weak) Happy (Mild) Sad (Mild) Sad
Shock (Weak) Fear Surprise Fear
Like Happy (Mild) Happy (Mild) Happy
Envy (Weak) Sad (Weak) Disgust (Mild) Fear
Awe Happy Surprise (Mild) Surprise

Dismissive (Weak) Angry Angry Sad
No evaluation (Weak) Happy (Weak) Sad (Weak) Fear

artist will react with its own facial expression as well as
with audible speech, and the artist’s reaction will be scaled
by how intense the player’s evaluation was. Please note this
intensity is only from the word used by the player, not from the
player’s facial expression intensity. Finally, whether the player
gazed at the painting long enough to make a fair evaluation
is considered; for example, if the player barely looked at
a painting and gives it a negative evaluation, the artist will
interpret that as being (unfairly) Dismissive.

The NPCs react to the player’s evaluation based on their
personalities. Fig. 22(a) shows the “Cheerful” artist, Fig.
22(b) shows the “Miserable” artist, and Fig. 22(c) shows the
“Cowardly” artist1. The color of the NPC is used to indicate its
personality (i.e., blue for “Miserable”, yellow for “Cowardly”,
and green for “Cheerful”). The bottom row of Fig. 14 shows
each of the possible NPC responses with maximum intensity,
while Fig. 23 illustrates each NPC facial expression with the
possible intensities. Again, however, the intensity of theartist’s
response will be influenced by the intensity of the player’s
evaluation. The complete list of evaluations and responsesis
shown in Table V(b). The relative NPC response intensities
shown indicate the maximum possible response intensity. One
can see, for example, that the Cowardly artist is somewhat
afraid of an envious player, perhaps fearing for its own safety
or the safety of its painting. The Cheerful artist, in contrast,
exhibits slight sadness, indicating that it pities the player for
being jealous of its work. (Please see the supplemental material
for a video demo.)

1Please note that these personalities are not meant to reflectthe personalities
of the actual artists of the paintings used in this game (e.g., we are not
suggesting Jackson Pollock had a Miserable personality northat Claude Monet
had a Cowardly one).

Fig. 23. NPC expressions and intensities (excluding Neutral).

B. Quantitative Evaluation

To test the effectiveness of our system within the appli-
cation, we performed a quantitative evaluation with the “Art
Critic” game. Each player was asked to evaluate paintings
using every combination of (non-Neutral) facial expression
and verbal evaluation in sequence; this was done 3 times with
each player. In all cases, the player had looked at the paintings
“long enough” (that is, the Dismissive evaluation is not tested
here, since it overlaps with all of the negative evaluations).
Six players were tested, giving us a total of 432 samples (= 6
expressions× 4 words× 3 rounds× 6 players).

The results in Table VI demonstrate the effectiveness of
our facial expression recognition component in a live context.
AUC scores were computed as described earlier. The corre-
sponding confusion matrix is given in Table VII; note that,
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although the players were not instructed to perform Neutral
explicitly, it is included here to show cases wherein a given
expression was mistaken for Neutral.

TABLE VI
”A RT CRITIC” FACIAL EXPRESSIONCLASSIFICATION RESULTS WITH

HIGHESTACCURACY (HISTORY SIZE = 50 FRAMES)

Class Acc. Pre. Rec. F1 AUC

Angry 0.986 0.986 0.986 0.986 0.990
Disgust 0.972 0.959 0.972 0.966 0.993

Fear 0.917 0.985 0.917 0.950 0.976
Happy 1 0.986 1 0.993 0.982

Sad 0.944 0.986 0.944 0.965 0.985
Surprise 0.931 0.957 0.931 0.944 0.995
W. Avg. 0.958 0.977 0.958 0.967 0.987

TABLE VII
”A RT CRITIC” FACIAL EXPRESSIONCONFUSIONTABLE WITH HIGHEST

ACCURACY (HISTORY SIZE = 50 FRAMES)

Classified as→ A
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Angry 71 1 0 0 0 0 0
Disgust 0 70 0 0 0 0 2

Fear 0 2 66 0 1 1 2
Happy 0 0 0 72 0 0 0

Sad 1 0 0 0 68 2 1
Surprise 0 0 1 1 0 67 3
Neutral 0 0 0 0 0 0 0

The results in Table VIII show how well the system is
able to identify the correct painting evaluations given by
the player. The corresponding confusion matrix is given in
Table IX. Since the speech recognition component worked
flawlessly in our tests, we used the weights from the facial
expression component to compute AUC. In cases wherein
a single painting evaluation could have been generated by
multiple expressions, the scores for all relevant expressions
are added together for the given evaluation class.

TABLE VIII
”A RT CRITIC” PAINTING EVALUATION CLASSIFICATION RESULTS WITH

HIGHESTACCURACY (HISTORY SIZE = 52 FRAMES)

Class Acc. Pre. Rec. F1 AUC

(Moderate) Dislike 1 0.947 1 0.973 0.996
(Strong) Dislike 1 0.947 1 0.973 0.995

(Moderate) Mocking 1 1 1 1 0.995
(Strong) Mocking 1 1 1 1 0.997

(Moderate) Polite Dislike 0.944 0.971 0.944 0.958 0.994
(Strong) Polite Dislike 0.944 1 0.944 0.971 0.994

(Moderate) Shock 1 1 1 1 1
(Strong) Shock 0.944 0.944 0.944 0.944 0.997
(Moderate) Like 0.944 0.962 0.944 0.953 0.979

(Strong) Like 1 0.964 1 0.982 0.992
(Moderate) Envy 1 0.973 1 0.986 0.995

(Strong) Envy 1 1 1 1 0.996
(Moderate) Awe 0.889 0.941 0.889 0.914 0.999

(Strong) Awe 0.889 1 0.889 0.941 0.999
W. Avg. 0.972 0.973 0.972 0.972 0.993

Both Tables VI and VIII are from using the best history
sizes in terms of classification accuracy (50 and 52 frames,
respectively). Fig. 24(a) and Fig. 24(b) show how the accuracy
and AUC scores for facial expression classification vary with

TABLE X
”A RT CRITIC” QUALITATIVE EVALUATION (SCORES RANGE FROM1 =

“STRONGLY DISAGREE” TO 5 = “STRONGLY AGREE”)

Question Mean Std. Dev.
Overall - Fun 4.50 0.76
Overall - Comfortable 4.33 0.94
Overall - Easy 4.50 0.50
Eye Tracking - Intuitive 4.50 0.50
Eye Tracking - Comfortable 4.00 1.16
Eye Tracking - Immersive 4.33 1.11
Head Pose - Intuitive 5.00 0.00
Head Pose - Comfortable 4.83 0.37
Head Pose - Immersive 4.83 0.37
Facial Expression - Intuitive 4.33 0.75
Facial Expression - Comfortable 4.00 0.82
Facial Expression - Immersive 4.5 0.76
NPC Facial Expression - Immersive 4.33 1.11
NPC Facial Expression - Fun 4.33 1.11
NPC Interaction - Fun 4.50 0.76
NPC Interaction - Immersive 4.50 0.76

the history size, while Fig. 24(c) and Fig. 24(d) show how
the accuracy and AUC scores for evaluation classification
vary with the history size. Both the expression and evaluation
AUC scores begin to decline after size 46 or so. A possible
explanation is that the history is going too far back in time
to a point before the player began making the expression; this
would indicate that some of the players may have only held
their expression for about a second or so before issuing their
evaluation.

C. Qualitative Evaluation

After each player finished playing the game, we asked
them to fill out a questionnaire about the experience. The
questions focused on whether each component, such as head
pose, made the game comfortable, more immersive, and/or fun.
A 5-point scale was used: “Strongly Disagree” (1), “Disagree”
(2), “Neutral” (3), “Agree” (4), and “Strongly Agree” (5). An
option for “Not Sure” was also included, but it was not used
by any of the players. Table X gives the average and standard
deviation of the answers from the questionnaires.

The evaluation shows very positive feedback on the system
developed. All the components have an average of at least 4,
and most of them meet or exceed 4.5, which demonstrates the
positive experience the system generated.

VII. D ISCUSSION ANDCONCLUSION

In this paper, we have proposed a novel system incor-
porating head pose estimation, eye gaze estimation, facial
expression recognition, speech recognition, and text-to-speech
for use in a gaming context. Through the presented game
application, we have also shown the utility of these multiple
modalities as means of control for more advanced NPC and
object interaction as well as, ultimately, increased immersion
in a game. The system runs in real time. It is also flexible,
able to run with a simple webcam-monitor setup or with a
more complex arrangement using a pan-tilt-zoom camera in
conjunction with the Kinect. We have also presented a novel
head pose estimation algorithm using scene flow and a generic
3D head model, and finally we have shown improved facial



IEEE TRANS. ON SMC-PART B: SPECIAL ISSUE ON MODERN CONTROL FOR COMPUTER GAMES 13

TABLE IX
”A RT CRITIC” PAINTING EVALUATION CONFUSIONTABLE WITH HIGHESTACCURACY (HISTORY SIZE = 52 FRAMES)
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(Moderate) Dislike 36 0 0 0 0 0 0 0 0 0 0 0 0 0
(Strong) Dislike 0 36 0 0 0 0 0 0 0 0 0 0 0 0

(Moderate) Mocking 0 0 18 0 0 0 0 0 0 0 0 0 0 0
(Strong) Mocking 0 0 0 18 0 0 0 0 0 0 0 0 0 0

(Moderate) Polite Dislike 2 0 0 0 34 0 0 0 0 0 0 0 0 0
(Strong) Polite Dislike 0 1 0 0 0 34 0 1 0 0 0 0 0 0

(Moderate) Shock 0 0 0 0 0 0 18 0 0 0 0 0 0 0
(Strong) Shock 0 1 0 0 0 0 0 17 0 0 0 0 0 0
(Moderate) Like 0 0 0 0 1 0 0 0 51 0 1 0 1 0

(Strong) Like 0 0 0 0 0 0 0 0 0 54 0 0 0 0
(Moderate) Envy 0 0 0 0 0 0 0 0 0 0 36 0 0 0

(Strong) Envy 0 0 0 0 0 0 0 0 0 0 0 36 0 0
(Moderate) Awe 0 0 0 0 0 0 0 0 2 0 0 0 16 0

(Strong) Awe 0 0 0 0 0 0 0 0 0 2 0 0 0 16

(a) (b) (c) (d)

Fig. 24. History size vs. (a) facial expression accuracy, (b) facial expression AUC, (c) painting evaluation accuracy,and (d) painting evaluation AUC.

expression recognition performance using LBP-TOP on the
2D shape index image domain.

A word may be said about the computational complexity
of the system. The computational complexity for the eye gaze
estimation is dominated by solving the linear equations; since
SVD is used as the underlying mechanism, the complexity
is O(mn2), where m and n are the number of rows and
columns in the matrix, respectively. However,n is constant
at 3, so the final complexity for eye gaze estimation is
O(m). The facial expression component first involves the
calculation of the shape index images. ForM pixels and a
neighborhood size ofN , the resulting complexity isO(MN2),
since the necessary SVD matrices are precomputed ahead of
time and the eigenvector/eigenvalue computation for the2× 2
Weingarten matrix takes constant time. We compute uniform
LBP features for each new image, so the time complexity
is O(PXY ), where X and Y are the dimensions of the
image andP is the LBP sample count. The LBP features
for the new temporal plane data are also computed, so the
complexity is O(BxPY + ByPX), whereBx and By are
the number of blocks inx and y, respectively. Finally, the
head pose component is composed of two complexity factors.
The first is the AAM used for tracking the points; after

training, this element runs in linear time to the number of
pointsQ. The second is the scene flow computation, which
is also linear in the number of feature points. Thus, the
total time complexity for the entire system is approximately
O(m)+O(MN2)+O(PXY )+O(BxPY +ByPX)+O(Q),
whereQ is the number of points in the head pose model.

The current version of our system does have a few limita-
tions. The eye gaze component works best when the accurate
orientation and position of the camera and screen is known
ahead of time (i.e., the camera system is “fully calibrated”).
Still, an estimate of the eye gaze focus point can still be ob-
tained without precise screen-camera information. Our current
expression module uses person-specific templates; however, it
is not unusually for computer-vision-based games to require
a person-specific calibration phase. Nonetheless, in the future
we will collect and train on a large facial expression database
to provide a more flexible, reliable, and universal solution.
Finally, the head pose estimation approach does rely on the
accuracy of the tracked feature points, and therefore we will
work on increasing the robustness of the feature point tracking.

Overall, the underlying interaction system of the “Art Critic”
game has great potential to advance the state of the art in
the gaming arena and more generally in human-computer
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interaction. Immersion and suspension of disbelief have re-
mained elusive goals in game development, partially due the
hitherto unavoidable but nevertheless clumsy ways the player
interfaces with the game world and its virtual inhabitants (e.g.,
selecting among “verbal” responses with a mouse, manually
adjusting the expression of the player’s avatar, etc.). With our
system, however, the combination of head pose, eye gaze,
expression, speech information, and synthetic speech forms
a more complete communication interface, one that feels
intuitive and behaves naturally. A single-channel system is
insufficient, as it would lead to unnatural and uncomfortable
control mapping schemes. For example, how does one map
facial expression to player view? The problem remains even
if the mapping scheme is reasonable; for instance, if eye gaze
alone was used to change the viewing direction, the player
would have to maintain perfect control of his/her eyes, fixing
steadily on a location, which is awkward at best. Even using
a subset of these channels would run the risk of making the
technology a mere gimmick, since other, more conventional
means of communication would have to fill the gap and thus
remind the player that all this is, indeed, only a game. Another
advantage of using multiple channels is that it allows the
system to recognize more complex and interesting responses
from the player, such as Mocking (which combines two
seemingly conflicting signals, a smile and a negative verbal
evaluation).

Moreover, we would argue that the use of player information
in “Art Critic” is sensible and logical, and we believe that
the concepts presented herein could be easily extended to
other gaming scenarios. For example, imagine a fighting game
wherein the player can taunt or intimidate his/her opponent
using speech, gaze, head gestures, and facial expression. Alter-
natively, one can envisage a first-person shooter game wherein
the player encourages surrounding NPC troops and/or issues
orders using the same channels of communication. Another
possible scenario would be a simulated social interaction game
for children. Indeed, any virtual world that involves one or
more non-human agents can only feel immersive if the agents
respond naturally to all of the signals the player is sending, and
our system enables virtual agents to do so. If we apply these
concepts to “edutainment”, educational games could be made
more engaging and effective if the system is able to recognize
the child’s speech and interpret his/her facial expressions,
gaze, and head/hand gestures, e.g., to see whether the child
interested, bored, or confused.

Our future work in this area will include increasing the
robustness of each system component. We would also like
to extend our expression recognition system in the following
ways: 1) use the eye gaze as a cue to integrate with dynamic
textures for estimation of emotion and intention; 2) expand
its list of expressions to non-standard affective states, such
as interest or boredom; 3) train it to be able to recognize
subtle or low-intensity facial expressions; and 4) extend it to
output the expression intensity. We would also be interested
in including head gestures (e.g., nodding “yes” or shaking
the head “no”) as part of the overall system. One of our
goals is utilizing hand gestures or body movement/position
(such as from the Kinect) as indicators to move forward and

backward in the virtual world [45] [46]. In general, further
integration of the Kinect into our system is another of our
project goals, perhaps making direct use of the depth imagery.
More advanced NPC artificial intelligence would also be of
interest. Finally, we would like the system to interpret more
complicated speech instructions as well as to infer emotions
from speech amplitude and intonation [47].
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[24] H. Gómez-Gauchı́a and F. Peinado, “Automatic customization of non-
player characters using players temperament,” inTechnologies for In-
teractive Digital Storytelling and Entertainment, ser. Lecture Notes in
Computer Science. Springer-Verlag, 2006.

[25] C. Kozasa, H. Fukutake, H. Notsu, Y. Okada, and K. Niijima, “Facial
animation using emotional model,” inIntern. Conf. on Computer Graph-
ics, Imaging and Visualisation, Jul. 2006, pp. 428–433.

[26] B. Lance and S. Marsella, “A model of gaze for the purposeof
emotional expression in virtual embodied agents,” inIntern. Joint Conf.
on Autonomous Agents and Multiagent Systems, vol. 1.

[27] M. Reale, S. Canavan, L. Yin, K. Hu, and T. Hung, “A multi-gesture
interaction system using a 3-D iris disk model for gaze estimation and
an active appearance model for 3-D hand pointing,”IEEE Trans. on
Multimedia, vol. 13, no. 3, pp. 474–486, Jun. 2011.

[28] S. Vedula, P. Rander, R. Collins, and T. Kanade, “Three-dimensional
scene flow,”IEEE Trans. on PAMI, vol. 27, no. 3, pp. 475–480, Mar.
2005.

[29] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance
models.” IEEE Trans. on PAMI, vol. 23, no. 6, pp. 681–685, 2001.

[30] C. Dorai and A. Jain, “COSMOS-a representation scheme for 3D free-
form objects,” IEEE Trans. on PAMI, vol. 19, no. 10, pp. 1115 –1130,
Oct. 1997.
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