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Abstract—True immersion of a player within a game can
only occur when the world simulated looks and behaves as
close to reality as possible. This implies that the game must
correctly read and understand, among other things, the plagr's
focus, attitude towards the objects/persons in focus, gaeses, and
speech. In this paper, we proposed a novel system that integpes
eye gaze estimation, head pose estimation, facial expressi
recognition, speech recognition, and text-to-speech coropents
for use in real-time games. Both the eye gaze and head pose
components utilize underlying 3D models, and our novel head
pose estimation algorithm uniquely combines scene flow witla
generic head model. The facial expression recognition modk
uses the Local Binary Patterns with Three Orthogonal Planes
(LBP-TOP) approach on the 2D shape index domain rather than
the pixel domain, resulting in improved classification. Oursystem

has also been extended to use a pan-tilt-zoom camera driveyb 1, 00,5 Of course, the player’s speech should also be taken
the Kinect, allowing us to track a moving player. A test game,

“Art Critic”, is also presented, which not only demonstrates the into account [3], [4], as it is perhaps the most direct form

utility of our system but also provides a template for playe'NPC ~ Of human communication. With the exception of the Kinect
(non-player character) interaction in a gaming context. Tre system interface, however, automatic speech recognitich a

player alters his/her view of the 3D world using head pose, ks gnalysis are infrequently used in a gaming context. Many
at paintings/NPCs using eye gaze, and makes an evaluationdesl modern games, especially those within the role-playing and

on the player's expression and speech. The NPC “artist” will f h imul
respond with facial expression and synthetic speech baseadts I'St-Person snooter genres, attempt to simulate person-to

personality. Both qualitative and quantitative evaluations of the Person interaction and communication as a critical parhef t
system are performed to illustrate the system’s effectivegss. experience. One problem, however, is that the player gipera
Index Terms—Gaze tracking, head pose estimation, expression f€€ls somewhat disconnected from his/her character, sirece
recognition, speech recognition, text-to-speech, gaminigpterac-  player invariably chooses what they will say and how they
tion. will say it from a list of options. Worse, in some games the
player then watches and listens to their own character make
|. INTRODUCTION the response chosen. We believe that allowing the player to
ge more involved in the experience will increase immersion

HE principal goal of many games is to immerse the® "
player in the world presented. When we encounter ph%ithin the game and, consequently, make the game more
It falls, then, to the next generation of games to

nomena in the real world, however, our responses are off@oyable. gar
multifaceted, including our facial expression, body laage: read and interpret all channels of human communication and

head pose, eye gaze, and speech. With the advent of mod@rfESPond appropriately. However, to the best of the asthor

game system inputs such as the Xbox Kinect [1] and t%@owledge, there is no game or gaming system to date that

PlayStation Move [2], the industry has extended the gameficorporates head pose estimation, eye gaze estimatien, fa
inputs beyond the canonical controllers of the past and egperfia! €xpression recognition, speech recognition, andrsfiu

up the possibility of games responding to the visual andaudiPeech generation all together as part of the player'sdotive
signals we send. In particular, a wealth of information cafPerience. Therefore, we propose a multisignal vision and
be found in the players head pose and eye gaze. Oncshgech system to_read, recognize, and respond to all these
region of interest is fixed upon, the player's facial expi@ss Channels in a gaming context.

potentia”y gives us the p|ayer’s Opinion of the Object orgoe The automatic interpretation of data from any of these
channels remains challenging. The overwhelming majoriity o
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eye region segmentation and pixel-wise matching with 3D

Fig. 1. The “Art Critic’ game with multisignal vision and speh interface.
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Fig. 2. Overview of multisignal vision and speech intemactsystem and application.

rendered eyeball models [11], [12], or even the reflection &r eye gaze estimation. A novel, subject-independent head
the screen off the cornea [13]. Nonetheless, eye trackingponse estimation algorithm incorporating scene flow [28] and
regular, non-infrared 2D imagery is still a difficult proble  a generic 3D model is also presented. An active appearance

Some previous work shows successful head pose estimatinodel (AAM) based approach [29] is applied to detect and
based on a depth-aware camera [14] [15], multiple camettagck 10 feature points on the player's 2D head images,
[16], and a single camera [17], but accurate, continuoud, aand the head pose is then estimated using prior knowledge
real-time head pose estimation remains a challenge, partiof the head shape and the geometric relationship between
larly with estimation of large head rotations. the 2D images and a 3D generic model. The expression

There has been work done to incorporate facial expressi@tognition module leverages a unique 2D shape index [30]
recognition by itself into games, e.g., a multiplayer oelindynamic texture approach based on the Local Binary Patterns
game using Gabor wavelets and SVM for expression classifiith Three Orthogonal Planes (LBP-TOP) algorithm [31];
cation [18] and an HMM-based five expression recognitiamser-specific templates are employed for each of the seven
system for a network game [19]. Expression synthesis hastotypic expressions (Angry, Disgust, Fear, Happy, Sad,
been utilized in “serious games” [20] and storytelling sysSurprise, and Neutral). The camera images for the visimeda
tems [21], while both expression recognition and synthesismponents can be from a simple webcam or from a pan-tilt-
have been used for avatar synthesis [22], multimodal inpzsom camera driven by the Kinect SDK to focus in on the
systems [23], non-player character (NPC) behavior/peiggn player's head. CMU’s Pocketsphinx speech recognitiorakjpr
customization [24], NPC emotional models [25], and virtugB2] is employed to recognize words and phrases spoken by
agents with gaze behavior [26]. However, the approaches ahd player, and the Festival text-to-speech library [38jved
systems in this vein do not incorporate eye gaze, head pasS®Cs to talk back to the player. To illustrate the power of
facial expression, speech information, and text-to-spdec such a system, a gaming application combining all of these
interacting with the game world and its virtual inhabitaats components is presented. This game, “Art Critic” (Fig. 1),
we do. allows the player to navigate a 3D virtual art gallery and enak

Motivated by recent work [27], we propose a novel systeewvaluations of the paintings therein. Head pose changes are
with components performing eye gaze estimation, head paseognized and used to alter the player’s view. Incorpogati
estimation, facial expression recognition, speech reitiogn both head pose and eye gaze, the player’'s point of focus is
and text-to-speech synthesis for use in real-time gamesdatracked; in particular, the system checks whether the playe
on our previous work [27], we utilize a 3D model of the eye
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has looked or is looking at a given painting in the gallery.
An NPC “artist” stands next to its work. The player looks
at the NPC and engages it in conversation. Then, when the
player looks at either the painting or the artist, makes @fac
expression, and speaks his/her evaluation of the painginyg, ( ’
“good”, “awful”, etc.), the “artist” will react with both feial N
expression and speech based on the player’s evaluation as N e
well as on the NPC's personality. The strength of the verbal {% .
component of the evaluation (e.g., “good” vs. “amazing”) wi
influence the intensity of the artist's response. Morea¥¢ne
player has not even looked at the painting, the artist'sti@ac
will be different. We perform a quantitative evaluation d¢we t
system in terms of facial expression and painting evaloati
classification. We also conduct a qualitative evaluatioaugh
a questionnaire given to players asking about the expegiehc 7%
the game and how each component affected that experience.
Using multiple communication channels allows for more
natural and comfortable interaction within the game. In-con
trast, a single-channel system would have to either assign
certain functionality to more conventional input devices.(
mouse and keyboard) or make a potentially awkward ges-
ture/control mapping scheme, such as having eye gaze tontro
the player’'s view or having expression linked to movement
commands. Moreover, our system makes intelligent use of &l§- 4. Feature points (a) on the 2D face and (b) on the 3D gefere
the important information from the face and head, thus fagni mo
a more complete interaction system rather than a conveaition

one with certain vision technologies attached as a bonumi Eace is detected, the Active Appearance Model techniqug [29
though one could argue that certain information need only employed to detect and track predefined feature points on
come from one channel (e.g., the overall evaluation cowe haine face. The feature point coordinates in the 2D images are
come from the facial expression or the speech alone), usighled and mapped to a 3D generic head model (described in
multiple channels allows for different combinations ofrsdds, section 11.B). Finally, based on the correspondence betwee
giving us complex, nuanced information from the player. the feature points, the 3D rotation angles can be calculated

Our principal contributions are 1) a novel head pose estimg@om the 2D coordinates by the so-called scene flow approach
tion approach that couples scene flow with a generic 3D he@qu}]_

model, 2) a unique, real-time system that makes use of head
pose, eye gaze, facial expression, speech, and text-tmispe , ,
for intuitive, natural NPC and virtual world interaction & A. Face Region and Feature Detection
gaming context, 3) exploration of the use of the LBP-TOP We have two possible camera setups. The first is a webcam
approach on the 2D shape index domain for improved facgifting on top of a monitor, an arrangement ideal for compute
expression recognition, and 4) an efficient implementatigaming. Alternatively, the Kinect in conjunction with an
suitable for use in games. Fig. 2 shows an overview of oattive, pan-tilt-zoom camera may be used, which is more
system and our application. appropriate for console system games. Fig. 3 illustrates th
The paper is organized as follows: Section Il presents odyal-camera system.
head pose estimation algorithm, Section IIl describes gar e The Kinect SDK provides functionality for body skeleton
gaze estimation approach, Section IV elaborates on oualfadracking; we use the 3D position of the head from this skeleto
expression recognition component, Section V briefly diseas to control an active pan-tilt-zoom camera to rotate and zoom
the speech recognition and text-to-speech componentspecinto the found head. The active camera (SONY SNC-RZ30N)
VI introduces our game application “Art Critic” and presentcan part=170° and tilt from —90° to +25° with a25x optical
our system evaluation results, and concluding remarks ag@om lens. Thus, the system obtains a close-up view of the
discussion are given in Section VII. face. Please note, however, that the video from the active
camera alone is used by our computer-vision-based system
components, including our head pose estimation algorithm.
The 3D position of the head from the Kinect is only used to
We propose a novel head pose estimation approach thete the active camera, and otherwise it is not used dyréctl
applies feature-based scene flow coupled with a 3D geneaity of our system components. Consequently, the Kinecttis no
head model. This component uses a 2D video stream raguired for our system; as long as the player remains within
determine head direction and position. First, the Violae® the view of the camera (whether it is a webcam or a pan-tilt-
approach [34] is applied to detect the frontal face. Aftexr theoom camera), our system can still be run. However, allowing

IQ—ig. 3. Kinect and active camera setup.

(b)

Il. HEAD POSEESTIMATION
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B. 2D to 3D Coordinate Correspondences

oligin In feature-based head pose estimation, the key step is to
feature i establish a set of geometric 2D-to-3D correspondences by
matching 2D features to the 3D model features. The 3D
generic model and the feature coordinates of the first fraime o

X the 2D video sequence can be scaled and aligned by their scale
origit Z feature factorm. This factorm is calculated by the distance between
the feature points, such as the 2D distadce between the
@ (b) outer corners of the left and right eyes on the frontal face

image and the corresponding 3D distanke on the generic
Fig. 5. The side view and top view of the generic model witfation radius. model.

C. Head Pose Estimation Based on Feature Point Scene Flow
Surface S

Similar to optical flow which is the two-dimensional motion
of points in an image, scene flow is the three-dimensional
motion of points in the 3D world space [28]. In theory, scene
flow can be estimated by a complete knowledge of the surface
geometry or by knowing image correspondences from multiple
cameras [28]. It is impossible to estimate the 3D scene flow
based only on one camera. In order to resolve this problem
for our application, some restrictions and assumptionshen t
head rotation should be implied: in our case, we assume that
head rotation and head translation do not occur simultssigou
Such an assumption is reasonable since, in practice, people
seldom perform head rotation when their bodies move in

" center of projection translation a great deal.
We assume each feature point is moving on a surface which
Fig. 6. The diagram of scene flow. has a functionf(z, y, z;t) = 0. Each feature point is rotated

around the axis in the middle of the neck. Fig. 5 shows the
origin and one feature point on the side view and top view
of our generic head model. As shown in Fig. 6, the image

the Kinect to direct the camera permits the player to moR9int (u,v) is the projection of the 3D pointz,y,z) by a
within a typical console-gaming space (such as a living rponProjection matrix?. Thus, the feature poirtt:, v; ¢) on a video

The reason we do not use imagery from the Kinect directly fgduence is the result of the projection of the correspendin
our estimation algorithms is that the resolution is too lowd feature point on the 3D surfacg at the 3D point(x, y, z; ¢)
player moving around in a typical console-gaming space; 1y the 3D motion object. Therefore, a scene flow of a pdint

is, the face image would be too small. As such, we instedythe 3D space generates an optical flow of the corresponding
take advantage of the higher resolution a pan-tilt-zoomezam Point in the 2D image domain.

can provide, while leveraging the Kinect's ability to coglygs ~ Let z(t) = (x,y, 2;t) be the 3D path of a feature point on
locate a player in the room. the face surface, and let(t) = (u,v;t) be the corresponding
feature point in the image. As the feature pait{t) moves

. ) F'"ollth head rotation, we assume that its rotation radius-
an active camera, we refine the face area by applying g ):(),t) remains constant; that is

appearance-based technique based on the work by Viola and
Jones [34] for face detection. Once the face area is idedhtifie
we use the classic active appearance model (AAM) approach dr -0 1)

[29] to detect and track the feature points on the face. A set dt

of landmark images are used to create the training set. We

defined ten 2D feature points on the face image, as shown infhe rotation radius of feature points is calculated by

Fig. 4(a). These form a sort of horseshoe shape on the face

and include the top points of the left and right eyebrows, the B 5

outer corners of the left and right eyes, four points on the T=EVIT YTt 2 @)
cheeks, and the left and right corners of the mouth. These 2D

landmarks are represented as a vector for training the shap&quation 3 describes how the 3D coordinates of the feature
and texture models by PCA. points are estimated:
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Ty = To + i Ax;
i=1

Yn = Yo + Z Ayi (3)
i=1

n
Zn = 2o + g Az;
i=1

where(z,,, y., z,) is the estimated coordinate of the feature
point of framen, (z,,y., 2,) is the original coordinate of the
generic model;j is the index of the frame number, amdis Fig. 8. Real-time head pose tests; (first row) tests on a eolgitvebcam

. AT with pose vector given by red line; (second row) tests on ttvea camera
the total number of frames since initializatiofz;, Ay;, Az; with pose vector given by green line. The estimated headspase verified

are calculated by: by the follow-up rotation of a generic model driven by the @gmrameters
obtained from the live subjects.

Az; =m X Au;

Byi=m x B @ two triangl t be similar, and initialize the model
AZi — —z, AIEZ + WO triangles mus e similar, and we reinitialize e modade

—Yo X
Y T data

We define four feature points on the 3D generic face model
to calculate the normal vector. These are the outer corrfersiy Head Pose Evaluation
left and right eyes, and the left and right corners of mouth, 1) Test on video sequences captured from 2D cameras:
as illustrated in Fig. 4(b). Note that these four points om thAs mentioned earlier, our system can be set up with a regular
3D generic model are a subset of the ten 2D points describg@dbcam or with an active pan-tilt-zoom camera. The first row
earlier. A triangle is formed by the two outer corners of thef Fig. 8 shows some examples from a Logitech webcam,
left and right eyes and the middle point of the two mouttvhile the second row contains results from the pan-tiltmaoo
corners. The normal vector of such a triangle is relativelyamera. The system works with a resolution of §480 in
expression invariant, thus representing the pose orientata real time. The green dots are the tracked feature points on
head accordingly. Although the mouth corners are senditivethe face; the estimated head pose vector is shown by a red
facial expression, we use the average value of the two molitie in the top row of Fig. 8 and a green line in the bottom
corners. Normally, when people perform facial expression®w of Fig. 8. We have also transferred the estimated pose to
the mouth corners move symmetrically. Even if the AAMhe 3D generic model to visualize the head orientation. The
fails to detect the exact location of the mouth corners dggneric model rotates in real time along with the subject’s
to expression changes, using the average of the two mot#ad. Subjectively, our system works fine in different imagi
points means the head pose estimation error caused by fac@iditions, including when the face is partially occludedi a
expression would be fairly small. when the subject is wearing eye glasses.

To address the issue of scene flow drift, we reinitialize the In order to objectively evaluate the accuracy of our head
(z0, Y0, 70) and radiusr for each point as well as the scalepose estimation algorithm, it is necessary to obtain thermyglo
factorm if the subject looks straight towards the camera. Thisuth for the head poses in the test videos. To do so, we affix a
is determined by comparing the angles of a triangle forméaker pointer to each subject’s forehead. This allows thgesti
from the outer eye corner points and one of the mouth corrterlocate precisely what they are looking at in real time. In
points with the corresponding triangle from the initiatiba our experiments, we tested the performance on five subjects
frame. Fig. 4(a) shows an example triangle 3, and~y are the from our lab. The range of yaw estimation is40°, 40°], in
angles to be used for the drift reduction. Based on the ptppewhich the right side is positive. The range of pitch estiimati
of similar triangles, if the corresponding angles betwdma tis [-30°, 30°], in which up is positive. The range of roll
first frame and the current subsequent frame are congrient, éstimation is |-30°, 30°], in which the right side is positive.
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TABLE |
AVERAGE ERROR OF HEAD POSE ESTIMATES ORD VIDEO SEQUENCES
Average Error (in degrees)
Method Pitch | Yaw Roll
POSIT [35] 6.7 7.9 2.1
Our Method | 3.8 6.2 1.4

(b) ©

Fig. 9. Test on 3D dynamic video sequences with spontane@asl h
movements and expressions.

) ) ) Fig. 10. (First column) 3D rendered eyeballs with white $inedicating
The charts in Fig. 7 show the average estimate and standamttal gaze direction; (second column) original 2D imagedifor 3D iris

deviation of yaw, pitCh, and roll, respectively. The avaagjetection; (third cqumn)_3D eyeballs rendered with the idoking ir_]t_o the
. . . camera; (fourth column) iris contours, shown as red doteden the iris and
of the absolute value error for yaw is 483for pitch iS e rest of the eyeball, found on rendered eyeball image.
3.36°, and for roll is 1.34. We also present the results from
using the Pose from Orthography and Scaling with Iterations
(POSIT) head pose estimation approach [35]. As one calill promising. POSIT relies on all the feature points afddo
see from Fig. 7, our approach performs better on averadieake its pose estimate; as such, any non-neutral expression
The estimated results demonstrate the effectiveness of g face can greatly influence the estimation results. Maeo
pose estimation approach with 2D cameras. (Please see When the face rotates, some feature points on the edge of the
supplemental material for a video demo.) model can be less reliable and thus affect the POSIT results.
2) Test on video sequences captured from 3D camafds: Our approach relies on fewer points that are more robust to
have also tested our algorithm using video textures from o@pression changes. Thus, this experiment demonstraes th
3D dynamic model database [36]. The 3D model sequenddy algorithm is in general applicable to spontaneous head
were captured by thBi3D system [37]. We tested on 3D videomovements with various facial expressions.
sequences of 40 subjects with spontaneous head movements
and various expressions.
In order to evaluate the accuracy of our head pose estimatidn Iris Detection and Contour Extraction
algorithm, we generated comparison model data from the 3DBased on existing work [27], we determine the current
model sequences directly. Based on the 3D tracking softwasgeball positions by offsets from the 3D head pose and posi-
provided by theDi3D imaging system [37], we are able totion. These offsets are calculated from a calibration piace
track feature points across the 3D model sequences. TWisich is described in [27]. The eye detection algorithm maps
feature point tracker relies on the 3D mesh data, and erg@ current camera image as a 2D texture onto the current
it is more accurate and stable than a 2D-based approach. pigsitions of the 3D eyeballs, rotates the eyeballs in pitch
9(a) shows the four feature points defined and tracked on ted yaw, renders the rotated eyeballs, and picks the rotated
3D model surfaces. Based on those 3D feature points, we ugg@éballs that look most like the user is looking into the ceame
the same approach described earlier (Fig. 4(b)) to gentirate This is evaluated by 1) computing the absolute pixel intgnsi
head orientation vector, giving us a reference pose otienta difference of the center region of each rendered eyebath fro
for each frame of each video to use for comparison. a dark, circular template and 2) circle-fitting on the gratlie
Given the comparison head pose data, we estimate the difagnitude image. We use CUDA [38] to determine the scores
ference between the estimated head poses from video textdeg multiple eyeball images simultaneously. Once the best
and the comparison poses from the corresponding 3D modelgeball rotations and scales are determined, the eyeballs a
Fig. 9 shows one example of a 3D model sequence witbtated back and projected into image space, giving us our 2D
tracked feature points. Fig. 9(a) is the captured 3D model, Firis centers. The first column of Fig. 10 shows some sample
9(b) is the corresponding texture, and Fig. 9(c) is the geneBD eyeballs rendered at different angles. For iris contour
model rotated by the estimated head orientation from tlegtraction, we effectively shoot rays outwards from theteen
textures. Table | shows the average errors of pose estimatif each optimally-rendered eyeball image, similar to [39].
from 4,279 frames of the 3D video database in terms of pitchnitially, the points along the rays with the highest damk-t
yaw, and roll, respectively. We again compare our work tight gradient value going outwards within a certain radius
results from POSIT [35], and our approach does noticeahiynge are chosen, and then all points falling outside of a
better. more restrictive range are eliminated to remove eyelid and
The experimental results show that errors occur more oftepecular highlight points. The right-most column of Fig. 10
with yaw rotation than with other rotations. The spontarseoshows some examples of iris contours. A GLSL pixel shader
facial behavior data does include some cases of the usg@@] is leveraged here to make the contour extraction more
rotating their heads while performing translation in thaxis. efficient.
As a result, this translation with rotation brings some eimio To eliminate eyelid points, the mapped iris contour points
our yaw estimation results. Overall, however, our resules aare rotated in line with the head pose direction and iteetiv

Ill. EYE GAZE ESTIMATION
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@ (b)

Fig. 11. Sample gaze results from different subjects. Fig. 12. (a) Gaze test grid. Markers glow white when activex becomes
light gray when eye cursor enters region. Eye gaze cursohésgreen
diamond. The numbers are drawn here for clarity but were reavid during
the test. (b) Example of redrawn gaze points from one of aist@he black

grouped until a collection that fits a plane parallel to thade border around the gaze points is the boundary of the scregonje
posex axis and going through the eyeball center is found. Two

such “eyelid” planes are found, one for the upper and one for =
the lower eyelid. Contour points outside of or to close to the @] &
. . . . . . . “1. Center Neighbor Samples
eyelids are eliminated, and the entire eyelid-finding pdoce D ) | [63][2[50]125[200]s0]60]43]58 |
is performed twice for each eyelid on each eye. J [o[o[ 1] 1] [ololo]" "=
Shifted
e [Ti 1 ololalelo]"

B. Gaze Estimation Label: 3

Each 2D contour point is converted to a 3D world vectoFjg. 13. Sample uniform LBP feature with 8 samples and radiu3.
intersected with the current eyeball sphere, converted to a
vector from the eyeball center, and normalized to give us an
“iris contour vector’C;. It is assumed we also have the irishit percentage,” which refers to how frequently the cursor
radius, stored as an expected dot produicetween the optical Was within the target block. Please note th_at a point going
axis G and each contour vectdt;. Therefore, to estimate thePast the edge of the screen was still considered a “hit” on
optical axisG, one solves a system of linear equations 38€ gaze target block closest to the gaze point. Given our
defined in [27]. If we takeV to be the normalized Vectorapphcgmon, this is reasonable since it is ass_,umed the user
from the eyeball center to the iris center point mapped onip |00king somewhere on the screen while using the system.
the eyeball surface, the basic idea is to find each eye'saipti¥Vith 4 subjects, the overall angular error was 5.9%hd the
axis G such that 1) it is parallel t&” and 2) the dot product average hit percentage was 90.54%. The error is relatigaly |
of G and each; is d. Note thatd, V, and the constant 1 for @ natural light eye gaze estimation approach [5].
are repeated in their respective matrig¥€stimes, once for
each contour vector. Doing so gives equal weight to our two IV. FACIAL EXPRESSIONRECOGNITION
constraints. Oncé& is found, it is normalized. To get the visual
axis, a fovea offset computed during the calibration praced
is used. The fovea offset is rotated based on the rotatiolesang Dynamic textures (DT) encode texture information across
of the optical axisG. The optical axis is then intersected witfSPace and time. In this case, these textures are constructed
the eyeball sphere to get a new estimate for the 3D iris cent®fth concatenated Local Binary Pattern histograms frone@hr
and the normalized vector from the fovea to this new iris eentOrthogonal Planes (LBP-TOP) [31]. Basically, for a given
is the final gaze direction for the given eye. image sequence, the LBP histogram for the middle image
The procedure above is performed for each eye indepdn-the time sequence is computed to give us HiE plane
dently. Then, the averages of the two foveae and the visi@$togram. With theX' coordinate set to its center value, an
axes are used as the final starting point and gaze directidage” plane is constructed with all variations bf and T
respectively. Assuming the screen’s 3D position, size, af@éme) to give us theY'T" plane, and the LBP histogram is
orientation are already known, a simple ray-plane intdisec extracted from that as well. A similar process is perfornmed f

A. 2D Shape Index Based Dynamic Textures

gives us the 2D gaze point of regard. the XT" plane. The histograms for each plane are normalized
Fig. 11 shows some sample gaze estimation results. (Pletéhvidually, and the concatenated histograms descrilee th
see the supplemental material for a video demo.) texture in three dimensions. To reduce histogram size, we us

only the uniform LBP features [31], with sample counts of

) 8 and radii of 3 for all dimensions. Fig. 13 shows a sample

C. Eye Gaze Evaluation uniform LBP feature with 8 samples and radii of 3nand
We performed a real-time gaze and point-of-regard estima-

tion experiment with a webcam wherein each user was asked-or facial expression recognition, the head position ig firs
to look at 12 gaze markers on the screen (effectively, theecendetermined. Then, the face image is scaled based on the
of each brick in a ¥4 grid, as shown in Fig. 12(a)). The2D eyeball centers. The image is then broken up into 9 by
user focused on each marker for 2-4 seconds. We record@edverlapping blocks with an overlap ratio of 70%; each
the angular error, which is measured as the angle betwddock has its own dynamic texture (DT) histogram. All DT
the estimated gaze direction vector and the vector from theck histograms are concatenated together to form onerfeat
gaze starting point to the target point. We also recorded thector describing the entire face region. Every frame, a&tim
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Fig. 14. Subject (top row) and NPC (bottom row) expressignsfleft to

right: Neutral, Angry, Disgust, Fear, Happy, Sad, Surprise Fig. 16. Grayscale and shape index images for each expnessio
Sph;ricnl Rut Saddle Ridge SP‘?‘“M BU-4DFE Expression Test: Accuracy
up ap

'1'rough‘ Saddlel(ut‘ 3%2{2: . ‘ Dome . 1

f T f f f i i i
0 00625 0.1875 03125 04375 05625 0.6875 08125 09375 1 0.98

Fig. 15. Nine well-known shape types and their locations lens; scale 096

[30]. 0.94

0.92

slice of the last 30 frames is used for classification. Note, 0.8

however, that we differ from [31] in three ways in order /

to improve the recognition performance. Firstly, the syste

extracts the DT histogram for each user’s expression argssav . . . " s 15 -
it as a template. For each new frame’s DT histogram, it is Neighborhood Size

compared to each template using the log-likelihood statist
Fig. 17. Shape index neighborhood size vs. accuracy on BEEA@st.

B
L(T,M) == Tylog M, (5)

b=1 from the cubic polynomial [42]. The shape index of a given
whereB is the number of bins, an#, and M, correspond to Point describes the nature of the area around that point [30]
the sample and model probabilities at bjmespectively. I1f\/, Equation 6 demonstrates how to compute the shape index
equals zero, we add nothing to the entropy to avoid um‘airWOUnd a poinp:
penalizing vectors that contain some zero components in the 1 1 k1(p) + Ka(p)
model probability vectors. When the system starts and the Sr(p) = 3 7 arctanm
subject’s face is found, the LBP histogram for a single frame L
is also extracted, and the nearest match is found in a daab\ﬁ(gere”1 and s are the principal curvaiures OT the_ surface,
of known subjects. If the subject confirms that they are tH¥th #1 = r2 [30]. Note that thearctan function in this

match found, the user's expression histograms and eye gsgélation returns an angle in radians. The shape index values
Eég in the range(] 1]; these values can in turn can be scaled
t
e

calibration data are loaded. Otherwise, the system prom . i

for the user's name. The user must then perform each of #igetN® ranged, 255] and thus treated as another image. This

seven prototypic expressions (Angry, Disgust, Fear, Hapb age can be used instead of the_ original face_ image in our
ystem. Fig. 15 shows the shape index scale with some well-

Sad, Surprise, and Neutral), and the system will record t o2
templates for that specific user. When the application isedo known shape types, while Fig. _16 shows some example shape
drédex images for each expression.

the new subject-specific data will be saved and can be retba .
fTo ensure performance acceptable for gaming, we adopt

in the future. Secondly, due to the good characterization _ . . :
(Eyee strategies. First, both the shape index computatidn a

facial expressions using topographic features [41], the 74 P : ‘ qf h pixel in CUDA
shape index images are computed as input into the LBr’B extraction stages are performed for each pixel in

TOP algorithm. Another motivation is that shape index insag 38]. Second, the LBP features for th.e enti]{eY plane are
will be relatively robust to different lighting condition®©ne computed,_and the correct LBP data is copied to each of the
shape index image is generated per frame. Thirdly, we h cks. Third, for th?XT a_md YT planes_, only the LBP
found that, in practice, having the user continue to perfor atures_ for the new incoming d?ta (that is, the part of each
the expression through the entire recorded sequence ashi ane with the most rgcemtcoor_dlnate) are compgted from
more stable performance. The top row of Fig. 14 shows ea%ﬁCh frame, and the histogram is updated accordingly.
of the expressions performed. ) ) N )

The shape index image is computed as follows: if th@- Facial Expression Recognition Evaluation
grayscale image is treated like a 3D height map, the localWe evaluate the expression recognition performance on the
neighborhood of each pixel can be fitted to a cubic polynomiBU-4DFE database [43]. We chose 24 subjects and marked
as described in [42]. The principal curvature directiond arthe onset, peak, offset, and ending frames of each expressio
magnitudes can be found from the Weingarten matrix formegquence. On average, each expression video is about 100

(6)
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. TABLE Il
BU-4DFE Expression Test: AUC BU-4DFE FACIAL EXPRESSIONCONFUSIONTABLE USING SHAPE INDEX
0.999 IMAGES WITH NEIGHBORHOODSIZE 13 x 13
> § 2 '§ IS
5S|Z| 8|8 3|53
Classified as—» | < | O w | T n | " 2
08 /\\ Angry 2] 0J0JO0OJOJOTJO
' Disgust 0 [23] 0 1 0 0 0
/ \ Fear 0 0]l24] 0 0 0 0
0.984 Happy 0 0 0 |[24] O 0 0
/ Sad 0 0|0 0[|24]0]0
1 Surprise 0 0 0 0 0]24] 0
0.979 : Neutral 0 0 2 0 3 0 19
5 7 9 11 13 15 17
Neighborhood Size
TABLE IV

BU-4DFE FACIAL EXPRESSIONCLASSIFICATION RESULTS USING
REGULAR GRAYSCALE IMAGES

[ Class [ Acc. [ Pre. | Rec. | F1 [ AUC |

Fig. 18. Shape index neighborhood size vs. AUC on BU-4DFE tes

TABLE 1l
BU-4DFE FACIAL EXPRESSIONCLASSIFICATION RESULTS USINGSHAPE Angry 1 10923} 1 0.96 | 0.999
INDEX IMAGES WITH NEIGHBORHOODSIZE 13 x 13 (ACC. = ACCURACY, Disgust | 1 0.96 1 10980 1
PRE. = PRECISION, REC. = RECALL, F1 = F1 SORE AUC = AREA Fear 1 0828 1 0.906 | 0.994
UNDER RECEIVEROPERATING CHARACTERISTIC CURVE, AND W. AVG. = Happy 1 1 1 1 1

Sad 0.958 | 0.885| 0.958 | 0.92 | 0.992

WEIGHTED AVERAGE]
) Surprise | 0.958 1 0.958 | 0.979 | 0.992

[ Class | Acc. [ Pre. [ Rec. | F1 | AUC | Neutral | 0.625 | 1 0.625 | 0.769 | 0.964
Angry T 1 1 1 0.999 W. Avg. | 0.935 | 0.942 | 0.935| 0.930 | 0.992
Disgust | 0.958 | 1 0.958 | 0.979 | 0.995
Fear 1 0923| 1 0.96 | 0.997
Happy 1 0.96 1 0980 | 1
SUSrSﬂse i 0?89 i 0-341 0'?99 Under Receiver Operating Characteristic curve (AUC) ssore
Neutral | 0792 | 1 0.792 | 0.884 | 0946 per class and use a weighted average of the scores to get the
W. Avg. | 0.964 | 0.967 | 0.964 | 0.963 | 0.991 final AUC score. The rationale for computing these scores is

that they give us theoretical upper-bounds on the clastdita
performance. To ensure that the log-likelihood scores per

) ~ class were comparable across different samples, the sagres
frames long. Each subject was chosen based on two critefigrmalized for each sample.

First, each of the subject’s expression sequences had taicon  Tests were conducted using LBP-TOP on shape index im-
a minimum of 45 frames between the peak and ending framg@es generated using different neighborhood sizes (asying
The first 30 frames are used as the training sequence for 8yhen the neighborhood around each pixel Was< N in
peak expression, and the last 30 frames are used for thegeskjze). Fig. 17 illustrates the expression recognition ey
sequence. This ensures that the training and testing seesieRs the neighborhood size varies, while Fig. 18 shows the
would only overlap at most by half. Second, each subjegipression recognition AUC as the neighborhood size varies
had to have at least two sequences with a minimum of 5ag the chart shows, our best results in terms of accuracy
Neutral frames each. The expression videos do not generg{l¥re with a neighborhood size df3 x 13, giving us an
have Neutral segments that are 30 frames in length. Thexefo{ccyracy of 96.4% and an AUC score of 0.991. Table I shows
the Neutral training and testing sequences were created (¥ classification results using the shape index images avith
going backwards and forwards through each 5-frame Neutial » 13 neighborhood. Table Il is the confusion matrix for
sequence until 30 frames were filled. Thus, we had a total @ pest shape index results.
5,040 frames for training and the same number for testing.The results for each class are fairly high, and the accuracy
The size of each face image was scaled @0 x 240 pixels.  for Neutral is acceptable. One might note the drop in acqurac
We compute the accuracy, precision, recall, and F1 sceffer N = 15 and the drop in AUC score afteN = 11.
for each class. Weighted averages are used for the ovemale reason for this is that, if the shape index neighborhood
statistics. Accuracy refers to the number of correctlyssified becomes too large compared to the image size, important
members of a given class (true-positives) over the totalb®rm information begins to get smoothed over because of the
of members in the class. Precision is defined as the numbepegfynomial fitting. That is, after a certain point, the padynial
true-positives for a class over the number of samples éledsi approximation of the face surface becomes less accurate and
as that class (in other words, both true-positives and falssegins to filter out relevant data as well as noise.
positives). Recall for a class is the number of true-pos#tiv For comparison, we also performed a test using LBP-TOP
over the number of true-positives and false-negativesiéter on regular grayscale images; the results are given in Table
being samples incorrectly classified as not belonging to the. Our accuracy results using shape index imagery are about
given class). F1 score is the weighted average of precisig% higher, mostly due to a decided drop in the classification
and recall, computed & WM- accuracy of Neutral using regular grayscale imagery. Adso,
In addition to these statistics, we also compute the AréddJC results are comparable. Indeed, the highest AUC score
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Fig. 19. Examples of grayscale and shape index images foeatty-
classified samples from BU-4DFE using shape index imagery.

Fig. 21. “Art Critic” game application in action.

The speech recognition module runs concurrently with the

main program as a separate thread, allowing simultaneous
recognition of all signals. It is only paused when the NPC

is speaking (to prevent a sort of feedback loop wherein NPC
speech is mistaken for player speech).

Fig. 20. Grayscale and shape index images for the miscledssimples
from BU-4DFE using shape index imagery. VI. VALIDATION THROUGH A GAMING APPLICATION:

“ART CRITIC”

A. Application Overview

possible using shape index imagery was 0.994 with neighbor- . .
hood sizell x 11, although the corresponding accuracy is To demonstrate the utility of our complete real-time system

lower under those conditions. In a gaming context, we have developed a game wherein the

Overall. these results demonstrate that this approachplayer is an art critic; Fig. 21 shows the application in @cti
j 'f"l"sue player can walk around an art gallery with paintings on

appropriate for our system. Please see Fig. 19 for examp,

S . . 2
o . tﬁe walls and NPC “artists” standing next to each painting.
of correctly classified samples from BU-4DFE using Shapﬁwe player’'s head pose is used to alter his/her view: when the

index images. Fig. 20 shows the misclassified samples uswgad,s yaw or pitch is past a certain threshold, the player's

shape index imagery. Almost all of the misclassified cases . .
P gery view rotates accordingly. Eye gaze is also tracked, and the

are Neutral; however, it can be observed that some of th% stem notes not only whether the player is currently logkin
do not look entirely expressionless, particularly the si@asp Y y play y 109

at a given NPC or painting but also how long the player

misclassified as Sad. o .
has looked at each painting. If the player’s distance from a
painting exceeds a certain threshold, however, the systim w

V. SPEECHRECOGNITION AND TEXT-TO-SPEECH intentionally not record their gaze behavior, since they@la

To recognize the user’s verbal evaluations and to allow thetoo far away to really see the painting properly. The frame

system to respond with speech, our system has both speteframe facial expression is stored in a history/dfframes
recognition and text-to-speech components. The speeoly+eqwhere N can be up to 60), and the current facial expression
nition module makes use of CMU’s Pocketsphinx softwalie the expression with the highest number of instances in
[32], and the text-to-speech module uses the Festivalriibrahe frame history (i.e., a majority voting scheme). The eye
[33]. The speech component starts listening as soon as éne yugze target is handled in the same fashion. This increases th
begins speaking and stops when the user is silent for mone thiabustness of the system overall.
1 second. It then extracts Mel-frequency cepstral coefftsie  The player then looks at an NPC and says “Hello”. The NPC
(MFCCs) [44] to form the feature vector for the given audioesponds and inquires whether the player has seen its work (i
sequence. Given the feature vector, an acoustic model & uttee player has already looked at the painting for some time,
to find the “senones” (effectively a complex phone or clagke NPC will instead note that the player has been looking
of sounds), while a dictionary maps these senones to words.its painting). The player then looks at either the NPC or
A language model can help filter out highly improbable worids painting, makes a facial expression, and gives a one-wor
sequences [32]. evaluation (“good”, “awful”, etc.). Different combinatis of

For our application, our dictionary includes 5 wordsfacial expressions and speech will be interpreted as difter
“hello”, “awful”, “bad”, “good”, and “amazing”. Please net overall evaluations, as shown in Table V(a). For example, an
however, that our dictionary can be very easily expandefingry expression with the word “bad” will simply indicate
Also, the existing module already returns a transcriptibn ®islike; however, a Happy expression with the word “bad”
the complete spoken phrase; thus, future work could involwéll be viewed as Mocking. Moreover, different words indiea
extending our recognition system to interpret full senémnc different intensities (e.g., “awful” is stronger than “BadThe
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(@
Fig. 22.

(a) Player Evaluations

(b)

“Art Critic” game NPC artists. (a) The Cheerful atti(b) the Miserable artist; (c) the Cowardly artist.

TABLE V

(A) PLAYER EVALUATIONS, AND (B) NPC’SEMOTIONAL RESPONSE BASED ONNPC’S PERSONALITY AND PLAYER' S EVALUATION (RELATIVE
INTENSITIES SHOWN ABSENCE OF INTENSITY LABEL INDICATES STRONG INTENSITY“EVAL.” REFERS TOPLAYER'S EVALUATION , WHILE “NPC PER.”
REFERS TO THENPC’S PERSONALITY; “WEAK “ < “MILD” IN TERMS OF INTENSITY.)

(b) NPC’s Emotional Response

Expression Speech “bad/awful” “good/amazing” Eval. NPC Per. Cheerful Miserable Cowardly
Angry/Disgust Dislike Envy Dislike Neutral Sad Sad
Fear Polite Dislike Like Mocking (Mild) Angry (Mild) Angry (Mild) Fear
Happy Mocking Like Polite Dislike (Weak) Happy (Mild) Sad (Mild) Sad
Sad Polite Dislike Like Shock (Weak) Fear Surprise Fear
Surprise Shock Awe Like Happy (Mild) Happy (Mild) Happy
Neutral Dislike Like Envy (Weak) Sad | (Weak) Disgust| (Mild) Fear
Awe Happy Surprise (Mild) Surprise
Dismissive (Weak) Angry Angry Sad
No evaluation (Weak) Happy (Weak) Sad (Weak) Fear

Angry  Disgust

Fear

11

artist will react with its own facial expression as well as
with audible speech, and the artist’'s reaction will be stale
by how intense the player’s evaluation was. Please note this
intensity is only from the word used by the player, not frora th
player’s facial expression intensity. Finally, whethee tilayer
gazed at the painting long enough to make a fair evaluation
is considered; for example, if the player barely looked at
a painting and gives it a negative evaluation, the artist wil
interpret that as being (unfairly) Dismissive.

The NPCs react to the player's evaluation based on their
personalities. Fig. 22(a) shows the “Cheerful” artist, .Fig
22(b) shows the “Miserable” artist, and Fig. 22(c) shows the
“Cowardly” artist. The color of the NPC is used to indicate its
personality (i.e., blue for “Miserable”, yellow for “Cowdly”,  Fig. 23.
and green for “Cheerful”). The bottom row of Fig. 14 shows
each of the possible NPC responses with maximum intensity,
while Fig. 23 illustrates each NPC facial expression witd thg, Quantitative Evaluation
possible intensities. Again, however, the intensity ofdhtst's
response will be influenced by the intensity of the player's To test the effectiveness of our system within the appli-
evaluation. The complete list of evaluations and respoisescation, we performed a quantitative evaluation with thet"Ar
shown in Table V(b). The relative NPC response intensitiégitic’ game. Each player was asked to evaluate paintings
shown indicate the maximum possible response intensitg. O#Sing every combination of (non-Neutral) facial expressio
can see, for example, that the Cowardly artist is somewlitd verbal evaluation in sequence; this was done 3 times with
afraid of an envious player, perhaps fearing for its owntgafeeach player. In all cases, the player had looked at the pgsti
or the safety of its painting. The Cheerful artist, in costra ‘long enough” (that is, the Dismissive evaluation is notees
exhibits slight sadness, indicating that it pities the prafor here, since it overlaps with all of the negative evaluagons
being jealous of its work. (Please see the supplementatialateSix players were tested, giving us a total of 432 samples (= 6
for a video demo.) expressions< 4 words x 3 roundsx 6 players).

The results in Table VI demonstrate the effectiveness of

Please note that these personalities are not meant to tiiéepersonalities gy facial expression recognition component in a live ceinte
of the actual artists of the paintings used in this game ,(evg. are not AUC scores were computed as described earlier. The corre-

suggesting Jackson Pollock had a Miserable personalitthavClaude Monet > ) e > )
had a Cowardly one). sponding confusion matrix is given in Table VII; note that,

Strong
Intensity

Intensity

Intensity

NPC expressions and intensities (excluding NButra
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. TABLE X
although the players were not instructed to perform Neutraka gt critic” QUALITATIVE EVALUATION (SCORES RANGE FROML =
explicitly, it is included here to show cases wherein a given “STRONGLY DISAGREE’ TO 5 = “STRONGLY AGREE")
expression was mistaken for Neutral. Question Mean | Std. Dev.
Overall - Fun 4.50 0.76
TABLE VI Overall - Comfortable 4.33 0.94
"ART CRITIC” FACIAL EXPRESSIONCLASSIFICATION RESULTS WITH Overall - Easy 4.50 0.50
HIGHESTACCURACY (HISTORY SiZE = 50 FRAMES) Eye Tracking - Intuitive 4.50 0.50
[Class [ Ace | Pre. | Rec. | F1 ] AUC] Eve Tracking - Immersve | 439 | 111
Angry 0.986 | 0.986 | 0.986 | 0.986 | 0.990 Head Pose - Intuitive 5.00 0.00
Disgust | 0.972 | 0.959 | 0.972 | 0.966 | 0.993 Head Pose - Comfortable 4.83 0.37
Fear 0.917 | 0.985| 0.917 | 0.950 | 0.976 Head Pose - Immersive 4.83 0.37
Happy 1 0986 1 0.993 | 0.982 Facial Expression - Intuitive 4.33 0.75
Sad | 0.944| 0.986 | 0.944 | 0.965 | 0.985 Facial Expression - Comfortable | 4.00 0.82
Surprise | 0.931 | 0.957 | 0.931| 0.944 | 0.995 Facial Expression - Immersive 45 0.76
W. Avg. [ 0.958 | 0.977 [ 0.958 | 0.967 | 0.987 NPC Facial Expression - Immersive 4.33 1.11
NPC Facial Expression - Fun 4.33 1.11
NPC Interaction - Fun 4.50 0.76
NPC Interaction - Immersive 4.50 0.76

TABLE VII
"ART CRITIC" FACIAL EXPRESSIONCONFUSIONTABLE WITH HIGHEST
ACCURACY (HISTORY SizE = 50 FRAMES)

NIE > § T the history size, while Fig. 24(c) and Fig. 24(d) shoy\{ hqw
5 2|38/ |2|2|3 the accuracy and AUC scores for evaluation classification
Classifiedas» | < |Q |4 |T |0 | ® | Z vary with the history size. Both the expression and evatuati

Angry 111101 0]0707]0 AUC scores begin to decline after size 46 or so. A possible

D;fg:ft 8 720 E?G 8 (1) (1) g explanation is that the history is going too far back in time

Happy ool o0 720010 to a point before the player began making the expressios; thi

Sad 100 0]68] 21 would indicate that some of the players may have only held

Surprise 00 j1]1]0]67]3 their expression for about a second or so before issuing thei
Neutral 0 0 0 0 0 0|0

evaluation.

The results in Table VIII show how well the system i% Qualitative Evaluation

able to identify the correct painting evaluations given by o .
the player. The corresponding confusion matrix is given in After each player finished playing the game, we asked

Table IX. Since the speech recognition component workd3m to fill out a questionnaire about the experience. The
flawlessly in our tests, we used the weights from the facigHestions focused on whether each component, such as head
expression component to compute AUC. In cases wherdfSe: made the game comfortable, more immersive, and/or fun
a single painting evaluation could have been generated f -point SC"f}le was useq: “Strongl): Disagree” (1), :Dls&gre
multiple expressions, the scores for all relevant expoessi (2), “Neutral” (3), “Agree” (4), and “Strongly Agree” (5). A

are added together for the given evaluation class. option for “Not Sure” was also included, but it was not used
by any of the players. Table X gives the average and standard
TABLE VIII deviation of the answers from the questionnaires.

"ART CRITIC" PAINTING EVALUATION CLASSIFICATION RESULTS WITH

HIGHESTACCURACY (HISTORY SIZE = 52 FRAMES) The evaluation shows very positive feedback on the system

developed. All the components have an average of at least 4,

| (Mode(rjfes)sDislike | Azc' | oF.)s;i'7| Rfc' | 02173| §g§6| and most of them meet or exceed 4.5, which demonstrates the
(Strong) Dislike 1 lo9a7! 1 | o0973| 0995 positive experience the system generated.
(Moderate) Moqking 1 1 1 1 0.995
(Mofg:g?e%);\g(ljitcekg?slike 0.344 0.371 0.344 0;58 8:331 VII. DISCUSSION ANDCONCLUSION
(Sﬁmgéri?gesﬁéﬂife 03441 1 | 034410971 0.994 In this paper, we have proposed a novel system incor-
(Strong) Shock 0.944 | 0.944 | 0.944 | 0.944 | 0.997 porating head pose estimation, eye gaze estimation, facial
(Moderate) Like 0.944 | 0.962 | 0.944 | 0.953 | 0.979 expression recognition, speech recognition, and tespgech
(N(I(S)ggpegé)'-"éﬁvy 1ol o%al 1 | oasa| 99%2)  for use in a gaming context. Through the presented game
(Strong) Envy 1 1 1 1 | 0996 | application, we have also shown the utility of these mugtipl
(Moderate) Awe 0.889 | 0.941 | 0.889 | 0.914 | 0.999 modalities as means of control for more advanced NPC and
(S”V\?”g\)/g’*we 8-233 . 37 . 8-233 8'3‘7‘% 8-333 object interaction as well as, ultimately, increased imsizer

in a game. The system runs in real time. It is also flexible,
able to run with a simple webcam-monitor setup or with a
Both Tables VI and VIII are from using the best historymore complex arrangement using a pan-tilt-zoom camera in
sizes in terms of classification accuracy (50 and 52 framesnjunction with the Kinect. We have also presented a novel
respectively). Fig. 24(a) and Fig. 24(b) show how the acgurahead pose estimation algorithm using scene flow and a generic
and AUC scores for facial expression classification vanhwit3D head model, and finally we have shown improved facial
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TABLE IX
"ART CRITIC" PAINTING EVALUATION CONFUSIONTABLE WITH HIGHESTACCURACY (HISTORY SIZE = 52 FRAMES)

Classified as—

(Moderate) Dislike
(Strong) Dislike
(Moderate) Mocking
(Strong) Mocking
(Moderate) Polite Dislike
(Strong) Polite Dislike
(Moderate) Shock
(Strong) Shock
(Moderate) Like
(Strong) Like
(Moderate) Envy
(Strong) Envy
(Moderate) Awe
(Strong) Awe

o|o| o| o| o| of o| o| o| | o| o| o| K| (Moderate) Dislike

o|o| o| o|o|o| +|o| | o| o| o| K| of| (Strong) Dislike

o|o| o| o|o|o| o| o| o| o| o| K| o] of| (Moderate) Mocking
o|o| o| o| o] o| o| o| o| o| 5| o| o] of| (Strong) Mocking

o|o| o| o|o|+|o| o| o| ¥ o| o| o| of| (Moderate) Polite Dislikg
o|o| o| o|o| o| o o| | o| o| o| o| of| (Strong) Polite Dislike
o| o| o| o| o] o| o| | o| o| o| o| o| of| (Moderate) Shock

o| o| o| o| o| o| | o| +| o| o| o| o| of| (Strong) Shock

o|N| o| o] of Ul o| o| o| o| o| o| o| of| (Moderate) Like

n| o] o| o| L] o| o| o| o| o| o| o| o| of| (Strong) Like
o|o| o| | o|+|o|o| o| o| o| o| o| of| (Moderate) Envy

o|o| ¥ o| o o| o| o| o| o| o| o| o| of| (Strong) Envy
o| 5| o o|o| +| o| o| o| o| o| o| o| o|| (Moderate) Awe
50| o|o| o] o|o| o| o| o| o| o| o| of| (Strong) Awe

Facial Expression Facial Expression Evaluation Accuracy Evaluation AUC
Accuracy AUC 1 1

B 0998
095 o= 099 095 0996
098 / 0994

097 09 0992

08 085 — 0988
0986

08—/ 0.984

07 ;
/ 093 0.982

1 4 7 10131619 22 25 28 31 34 37 40 43 46 49 52 55 58 14 7 101316 19 22 25 28 3134 37 40 43 46 49 52 55 58 1 4 71013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 1 4 7 10131619 22 2528 31 34 37 40 43 46 49 52 55 58
History Size History Size History Size History Size

@ (b) © (d)

Fig. 24. History size vs. (a) facial expression accuracy,fgbial expression AUC, (c) painting evaluation accurayl (d) painting evaluation AUC.

expression recognition performance using LBP-TOP on tlmining, this element runs in linear time to the number of
2D shape index image domain. points Q. The second is the scene flow computation, which

A word may be said about the computational complexif@als_o linear in the number o_f feature p_oints. Th_us, the
of the system. The computational complexity for the eye gafg@! time complexity for the entire system is approximptel
estimation is dominated by solving the linear equations;esi O(m)+Q(MN2)+O(PXY)TO(BIPY+B.UPX)+O(Q)’

SVD is used as the underlying mechanism, the complexif§f’€re« is the number of points in the head pose model.

is O(mn?), wherem and n are the number of rows and The current version of our system does have a few limita-
columns in the matrix, respectively. However,is constant tions. The eye gaze component works best when the accurate
at 3, so the final complexity for eye gaze estimation i@rientation and position of the camera and screen is known
O(m). The facial expression component first involves thahead of time (i.e., the camera system is “fully calibrajed”
calculation of the shape index images. Har pixels and a Still, an estimate of the eye gaze focus point can still be ob-
neighborhood size ¥, the resulting complexity i€ (M N?), tained without precise screen-camera information. Ourecuir
since the necessary SVD matrices are precomputed ahea@dfression module uses person-specific templates; however
time and the eigenvector/eigenvalue computation forthe2 is not unusually for computer-vision-based games to requir
Weingarten matrix takes constant time. We compute uniforfnperson-specific calibration phase. Nonetheless, in theefu
LBP features for each new image, so the time complexitye will collect and train on a large facial expression dasgba

is O(PXY), where X and Y are the dimensions of theto provide a more flexible, reliable, and universal solution
image andP is the LBP sample count. The LBP feature§inally, the head pose estimation approach does rely on the
for the new temporal plane data are also computed, so @gcuracy of the tracked feature points, and therefore we wil
complexity is O(B,PY + B,PX), where B, and B, are work on increasing the robustness of the feature point inack
the number of blocks inc and y, respectively. Finally, the  Overall, the underlying interaction system of the “Art @rit
head pose component is composed of two complexity factoggame has great potential to advance the state of the art in
The first is the AAM used for tracking the points; aftethe gaming arena and more generally in human-computer
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interaction. Immersion and suspension of disbelief have fgackward in the virtual world [45] [46]. In general, further

mained elusive goals in game development, partially due thtegration of the Kinect into our system is another of our
hitherto unavoidable but nevertheless clumsy ways theeplayroject goals, perhaps making direct use of the depth inyager
interfaces with the game world and its virtual inhabitatg)( More advanced NPC artificial intelligence would also be of
selecting among “verbal” responses with a mouse, manuailiterest. Finally, we would like the system to interpret mor

adjusting the expression of the player’s avatar, etc.)hWiir complicated speech instructions as well as to infer emstion
system, however, the combination of head pose, eye galzem speech amplitude and intonation [47].

expression, speech information, and synthetic speechsform

a more complete communication interface, one that feels

intuitive and behaves naturally. A single-channel system i
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