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Abstract 

Biometrics refers to technologies that measure and analyze human body characteristics, 

such as voice patterns, fingerprints, gait pattern, eye retinas and irises, facial patterns, 

DNA, and hand measurements, for authentication purposes. It has a wide range of 

applications and impacts on our human society, ranging from security, communication, 

health-care, law-enforcement, entertainment, education, and so on. In the past decades, 

biometrics research has been focused on automatic recognition of human body traits 

including fingerprint, iris, ear, periocular, face, palm, handwriting, gait, voice, and other 

modalities, as well as multi-modal biometrics and new biometrics based on novel sensing 

technologies. While each of these topics has been studied, facial characteristics attracted 

the most intensive investigations due to its non-intrusive nature with the most common 

measure in communication and the ease of data acquisition for individual identification 

and authentication. 

 

In terms of face biometrics, multiple sensing technologies have been developed for 

capturing facial data in multiple dimensional spaces, such as 2D, 3D, and 4D in recent 

years.  However, one type of data is not obtainable with existing sensors, whereas the 

visual information can be obtained only by witness’ description and rendered by forensic 

artists, which is call Face Sketch.  Sketch recognition is extremely important for law 

enforcement and security. Conventional face recognition systems can be used in a real-

time setting where cameras are able to capture a potential suspect, while sketch 
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recognition has to be used in a scenario where a witness has given a description of a 

suspect and the only means of identification is through the match of the sketch and a face 

database. These technologies have had great advances to the state of the art in recent 

years; however, there are still many unsolved problems that plague this field. Some of 

those problems include occlusion from things like glasses, hair, and makeup; changes in 

pose; ambiguity in shapes; uncertainty in description and representation, and variations in 

lighting and aging. An important step for tackling those problems is to investigate robust 

methods to precisely represent, detect, and track facial features, which is a main focus of 

this dissertation, the other focus being the classification of faces and sketches.  

 

We first propose a novel method for 2D feature detection for determining eye directions. 

This method utilizes the detected 2D facial features to construct a 3D model of the 

eyeball and iris. A natural extension to 2D feature tracking is to extend those ideas to 3D 

and 4D data. To this extent, we also present two novel algorithms for detecting and 

tracking 3D/4D features. The first method that is presented relies on the explicit shape of 

3D data. A so-called Action-Based Statistical Shape Model (ASSM) of the 3D shape is 

created, by sampling features on the testing data, to create a smooth deformation of the 

training data. These deformations allow us to fit our model to unseen input data to 

robustly detect and track facial features. The second method for detecting 3D/4D features 

is to make use of the explicit geometric shape of the face, but it also enforces a local 

constraint by sampling patches of data around each of the training landmarks. A novel 

Shape Index-based Statistical Shape Model (SI-SSM) is proposed.  Each of these methods 

has shown improvement over state of the art methods. This dissertation also shows an 
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application of the detected 3D/4D landmarks by using a new Dynamic Curvature 

descriptor for 3D facial activity analysis. 

Much of sketch recognition research is done using 2D data. In this dissertation, we 

propose an innovative approach by moving from the 2D domain to the 3D domain for 

such a task, which is the first of this kind in the biometrics research community. We 

present a novel method to construct 3D sketch from 2D data, significantly increasing the 

realism of sketch representation. Experimental results show that 3D sketch is 

advantageous in solving the problems of sketch recognition.  In addition, we investigate 

face identification under strong shadow, which is a very challenging problem. We present 

an analysis of a fusion-based face recognition method. This method achieves 

approximately double the recognition rate as compared to the conventional methods 

which are based on a single image only.  

 

In general, this dissertation addresses two important issues of face biometrics: landmark 

detection and sketch recognition in multi-dimensional spaces. The presented new 

methods with the experimental validation show the advancement to the state of the art in 

terms of both theoretical significance and practical applications. 
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Chapter 1 

Introduction 

The field of biometrics is an important one, as being able to measure and analyze human 

body characteristics has a wide range of applications. These applications range from 

security, communication, health-care, law enforcement, entertainment, and education. 

The biometrics community is very active and extremely varied in their approach, due to 

the wide range of specific topics that this field has. These fields include face, ear, iris, 

gait, palm, fingerprints, voice, handwriting, DNA, and, recently, studies into multi-modal 

biometrics (the combination of multiple modalities – ear, face, voice, etc.) have become 

popular. In recent decades a major focus of the biometrics community has been on 

studying facial characteristics, such as face recognition, as it is non-intrusive and a large 

amount of public data is readily available for testing. In studying facial characteristics 

(recognition, verification, classification, etc.) on 3D data, there is a major pre-processing 

step that needs to be performed, namely registration of the data. One way to perform this 

registration is to robustly detect and track 3D features on face models.  

 

While this dissertation aims to study multiple problems and questions in the biometrics 

community, there are two main focuses. The first being the study of 2D, 3D, and 4D 

facial feature detection, and the second being the classification of faces and sketches with 

applications to law enforcement and security. 
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1.1 Problems and Open Questions in the Biometrics Community 

There are many problems and open questions that drive the biometrics community. Some 

of these problems and questions include: 

(1) How to robustly and accurately identify a human subject? 

(2) How to accurately register 3D models as a pre-processing step for identifying 

subjects? 

(3) How to perform 3D face sketch recognition without any publicly available test 

data? 

(4) What is the best domain to perform biometrics analysis in (2D vs. 3D, or a 

combination of both)? 

 

These are all challenging and important questions that need to be answered to help further 

extend the current state of the art. This dissertation gives some studies and results for 

each of the above questions respectively: 

(1) Creating pseudo-3D data from 2D allows for the accurate and robust recognition of     

subjects. 

(2) Statistical model-based methods can accurately detect and track 3D facial features for 

registration. 

(3) 3D face sketch data can be accurately created from 2D data to study the challenging 

task of 3D face sketch recognition. 

(4) 3D data is shown to out-perform 2D data, as well as alleviate the problems inherent 

with 2D.  
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These questions help motivate the studies and algorithm development included in this 

dissertation. 

 

1.2  Background and Motivation 

Facial feature detection and tracking is an important first step for many applications that 

make use of 3D data. Some of these applications include face recognition [15], and 

expression analysis [151]. The current state-of-the-art methods in this research area 

include active shape models [57], active appearance models [2], and constrained local 

models [127]. While these are successful and widely used methods, they are currently 

limited to 2D data. 2D data has some inherent problems that that can be solved by 

utilizing 3D data such as pose changes and variations in lighting. This dissertation 

presents methods that extend these 2D concepts and utilizes 3D data. While 3D data can 

solve some of the problems inherent with 2D data, it is a non-trivial task in robustly 

detecting landmark features.  

 

A major component of facial feature analysis (2D, 3D, and 4D) is feature detection and 

tracking. It is useful in applications such as tele-conferencing, face recognition, 

entertainment, 3D model registration, and facial expression analysis. Facial feature 

detection is an extremely important first step in realizing any of the above listed 

applications. Detecting facial features allows for matching of landmarks between images 

and models in face recognition. Video segmentation can also be performed by making 

use of specific facial features that have been detected. Entertainment makes great use of 
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detected features by matching human facial features to animated models in 3D space. 

This type of method is utilized heavily in movies. 

 

There has been a number of successful feature detection methods developed in 2D. 

Active shape models [57] and active appearance models [2]  are two seminal and highly 

successful methods for performing 2D feature detection and tracking. These methods 

create a statistical model of the object (face) being modeled. These methods have been 

used for the past two decades and have influenced a significant amount of the current 

research. One such influence and extension is the creation of a so-called constrained local 

model [127]. These methods have also heavily influenced algorithms in 3D as well. One 

very successful method, in 3D, that has influences here is the 3D Morphable Model [58]. 

This method is used to create 3D face reconstructions from single images, as well as 

photo-realistic image manipulations. 

 

Although there has been a great deal of research for feature detection and tracking in both 

2D and 3D, there are still many open questions in both. Specifically when dealing with 

3D data, a major problem/question when using 3D data for feature detection is: What is a 

good feature to use? In this dissertation we propose two novel methods to define good 

features to use. The first makes use of the explicit shape of the 3D model to create a so-

called temporal deformable shape model (TDSM) [96], while the second extends this idea 

and combines the explicit shape of the 3D model with local data around each of the shape 

features, to create a so-called shape index-based statistical shape model (SI-SSM). 
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Solving the problems with using 3D data for features detection is a major motivation for 

this dissertation. 

 

Another important research topic addressed in this dissertation is face sketch recognition. 

Law enforcement can use this technology to aid in the apprehension of criminal suspects. 

Generally, sketches used in forensic investigation are derived from one of two methods. 

They are generated either from forensic artists (hand-drawn sketches) or from computer 

software (machine-drawn sketches). Both of these methods are generally used after an 

eyewitness has given a verbal description of the suspect. Once the sketches have been 

constructed, the main use of them is to post them in a public place with the hope that 

someone will recognize the suspect. This process can be extremely slow and inefficient, 

which gives way to significant need to be able to accurately, quickly, and automatically 

match a sketch photo to a database of suspect mugshots. 

 

Recently there has been promising work done in 2D face sketch recognition. Tang et.al 

[152][154], perform face sketch recognition by matching sketches to images through 

turning the face images into sketches to decrease the differences between the forensic 

sketch and the original image. Liu et. al [153], use the idea of local linear embedding to 

preserve the geometry between the photo and sketch images. Li et. al [155] propose to 

create a realistic face image from a sketch by using a hybrid subspace method. This 

approach has the benefit of being feasible to use in real-time. Recently, Zhang et. al [156] 

conducted a study of the comparison between human subjects recognition of sketches 

versus an automated principal component analysis based method. The results of this 
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study showed that while humans generally recognized the sketches better, the automatic 

machine-based approach was able to outperform human recognition when the sketches 

contained less distinctive features.  

 

Being able to accurately identify/classify subjects in both sketches and images is highly 

demanded and finding a novel way to automate this process is an important and active 

research topic. Since much of the work in being done entirely in 2D, this begs the 

question: Is 2D data enough to accurately identify/classify a subject? This question is 

even more difficult to answer for sketch recognition, as there is no readily available 3D 

face sketch database. The lack of this type of data poses an interesting problem: how do 

we access this type of data, to make use of 3D face recognition methods? This 

dissertation attempts to answer this question by proposing a novel approach to creating 

3D sketch data from 2D sketches with detected facial landmarks [147], which is the first 

work of its kind in the biometrics community. These questions regarding face and sketch 

recognition/classification are the second major motivation for this dissertation. 

 

1.3  Objective and Contributions 

The main focuses of this dissertation involve 2D, 3D, and 4D feature detection and 

tracking, as well as face and sketch recognition/classification. While there are many 

problems and questions that need to be answered regarding facial feature detection, and 

face/sketch recognition/classification, the objective of this dissertation is to make strides 

in answering the following questions:  
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(1) Can we utilize 3D data for instances where 2D data is not sufficient? 

(2) How can we study 3D face sketch recognition and classification when this type of 

data is not readily available? 

(3) What is a good 3D/4D feature to use for detection and tracking? 

(4) What applications can make good use of the subsequent features and data?  

(5) How do we track extreme data (expression, pose, etc.)? 

(6) Can the variance of a large set of data be, adequately, modeled in a statistical 

model for feature detection?   

To answer these questions this dissertation proposes multiple innovative and novel 

methods in the fields of feature detection and tracking, and the study of facial 

characteristics. The major contributions of this dissertation are summarized in the 

following sub-sections. 

 

1.3.1. 2D tracking for eye viewing direction 

Previous works in this field utilized 2D holistic bases approaches or local component 

based approaches [1][4][5][7][8]. In the first major contribution of this dissertation I 

propose to extend the state of the art via a novel method of constructing a 3D face model 

and eyeball from 2D data [145]. A scale-space topographic feature representation is used 

to model the 3D face and iris. Utilizing this newly constructed 3D face and eyeball we 

can then accurately determine the subject’s eye viewing direction. This 3D-based 

approach has many advantages compared to utilizing 2D data including resistance to 

image noise, the eye can be represented in a high level of detail, robustness to eyelids, 

and no camera calibration is required. 
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1.3.2. Image fusion for face recognition under shadow 

Face recognition is a challenging area of study, and while a great deal of progress has 

been made it still suffers from problems such as shadows (lighting); occlusion from hair, 

glasses, and makeup; and changes in pose. This dissertation focuses on the concept of 

fusing data to increase the recognition rates. Current state of the art methods for fusion 

based face recognition make use of probabilistic approaches [17], as well as manifolds, 

and Hidden Markov Models [18][25], however, using these types of methods can have a 

high cost. I propose a novel method of fusing data by using frames from rotated heads in 

videos [146]. This approach creates uses the implicit 3D data that is given from using 2D 

videos of rotated heads. I also propose to study what effects this type of fusion will have 

on the recognition rates of images under strong shadow, which is a very challenging 

problem. When comparing the results of fusing 10 frames of rotated heads with using a 

single frame of the subject; the recognition rate was almost double from 40% to 80%. 

 

1.3.3. 3D face sketch recognition 

Face sketch recognition is an important and challenging problem to solve. It can be 

extremely useful for security and law enforcement. Currently the work being done in this 

field is from 2D data alone, as there are no readily available 3D face sketch databases. 

The work being done in 2D involved both sketches done from and artist, as well as from 

software [33][34]. Face sketch recognition has important implications to forensic 

applications. This type of data can be useful in a court room setting where the only means 

of identifying a suspect comes from a witness description via a sketch drawing. I 

innovate and extend the state of the art by proposing a novel method of constructing 3D 
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face sketch data from 2D data [147]. In order to construct these 3D models, facial 

landmarks are firstly detected on 2D sketches, and then a scale-space topographic feature 

representation is combined with a 3D reference model. 3D sketch recognition 

experiments are conducted on both 3D models created from artist drawings, as well as 

sketches created from software. A recognition rate of approximately 92% was achieved. 

 

1.3.4. Dynamic curvature description for 3D facial activity analysis 

Much of the work in facial activity analysis is done in 2D [77][78][79] which suffer from 

the limitations of pose and lighting variations. I aim to study facial activity analysis in 3D 

by proposing a new so-called dynamic curvature descriptor [148]. This new descriptor 

used temporal information (3D+time), by constructing histograms of shape-index 

information to give an accurate representation of facial activity in a sequence. This newly 

proposed curvature descriptor is shown to outperform current state of the art facial 

activity analysis methods. 

 

1.3.5. 3D landmark detection and tracking 

Facial feature tracking has been extensively researched in 2D giving us successful 

algorithms such as AAM [2], and CLM [127]. Some promising results have been 

published for 3D facial feature tracking [149][55], however they have large error rates, 

and are relatively invariant to large pose changes and expressions. I extend the current 

state of the art by proposing two new statistical-based methods to detect and track 

features in 3D and 4D. Firstly, I propose a so-called temporal deformable shape model 

(TDSM) [96].  This TDSM makes use of the explicit shape of 3D data by directly 
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modeling the variation in shape for the training data. This newly proposed method is 

shown to out-perform current state of the art methods. Secondly, I propose an innovative 

extension to the TDSM algorithm, by a so-called shape index-based statistical shape 

model. This newly proposed extension not only makes use of the explicit shape of the 3D 

data, but also the local shape-index data around local features in the model. For both of 

the methods, I have tested on approximately 100,000 different 3D range models. Both 

methods are shown to have smaller error rates, and out-perform current state of the art 

methods. The efficacy of both methods is shown to have applications in entertainment, 

facial expression analysis, subject identification and verification, pose estimation, and 3D 

video segmentation. 

 

The rest of this dissertation is organized as follows: (1) first, a study of 2D feature 

tracking for eye viewing direction estimation is performed in Chapter 2; (2) a study in 

fusion-based face recognition is given in Chapter 3; (3) 3D facial activity analysis is 

shown in Chapter 4; (4) Chapter 5 details my innovative 3D face sketch modeling and 

recognition approach; (5) Chapters 6 and 7 detail my two new statistical model-based 

algorithms for detecting and tracking features in 3D and 4D; (6) finally, a conclusion for 

findings, applications, limitations, and a discussion in given in Chapter 8. 
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Chapter 2 

Dynamic Face Appearance Modeling and  

Sight Direction Estimation 

1. Introduction 

Facial appearances and sight orientations can be modeled in a 3D space. Existing 3D 

dynamic imaging systems [6][13] require a rigorous setup (e.g., short range of capture, 

user intervention for calibration of multiple cameras, lengthy pose-processing, and strict 

user cooperation, etc.), thus limiting their applications for human computer interaction. In 

this chapter, we present a system to model facial dynamic appearance and eye sight 

direction using a single video camera. We create dynamic 3D models from tracking 

information obtained from active appearance models and scale-space topographic 

features, and map them to a 3D space to create a 3D representation for each frame of a 

face video. We model both the 3D facial region and 3D iris region dynamically and 

explicitly, allowing an accurate estimation of eye sight directions through a dynamic 

video. The system framework is outlined in Figure 1.  

 

To model a face and its iris in a dynamic 3D space, feature tracking is the first step 

needed for the topographic model creation. Our system allows the user to either track the 

entire face or the subject’s eye region separately. The user can select which model they 

would like to use (face or eye). Here we use an active appearance model (AAM) [2] to 

track 459 feature points which are defined in the facial region. Since the subsequent eye 
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modeling requires a multi-scale space topographic representation and multi-size surface 

patch fitting for topographic label classification, we need to restrict the region of interest 

for efficient computation. Therefore we further track 8 landmarks to determine the region 

of interest for eyes. 

 

Figure 1. System Diagram. 

 

Extended from our previous work on topographic analysis for facial feature modeling 

[10][12], we propose a new scale-space topographic feature representation approach to 

model the dynamic facial appearance and iris sphere explicitly. We use a 3D geometric 

reference model (including a 3D facial surface mesh and a 3D eye mesh) to model 

individual faces and individual eyes. A multi-step dynamic mesh adaptation method is 

applied on both facial regions and eye regions to instantiate the model across video 

sequences. Note that unlike the conventional methods [4][1][5][7][8] for eye tracking and 

eye gaze estimation, which have used 2D holistic based approaches or local component 

based approaches, we estimate the eye viewing direction through the explicit 3D iris 

modeling. This allows for more flexible and reliable eye sight detection under various 

poses, expressions, and imaging conditions. The rest of the chapter will describe the 

components for tracking and modeling separately.  
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2. Tracking With Person-Dependent AAM 

Active appearance models were introduced by Cootes et al. [2][2]. It consists of two 

separate types of models; one is the variation of the face shape, the other is the variation 

of the gray level of that shape. These two models are combined together to create a 

statistical appearance model. During the training phase the user manually selects 

landmarks that correspond to the most important features on each of the images that will 

be used for training. After the landmarks are selected each of the landmarks from the 

images in the training set are warped to match the mean shape. Each set of landmarks are 

represented as a vector and PCA is applied to them. This can be approximated by the 

following formulas:  
sscQxx  x = x̅ + Qsc for shape and 

gg cQgg   for texture. In the 

shape formula x  is the mean shape, Qs represents the modes of variation and sc  defines 

the shape parameters. In the texture formula g  is the mean gray level. Qg represents the 

modes of variation and 
gc defines the texture parameters. In various works pertaining to 

active appearance models 95% - 98% of the variance is usually kept. To conduct our 

experiments we chose to retain 95% of the variance. 

 

To track the entire face, in real-time, 459 landmark points are used that cover the entire 

face (Figure 2 (b)). To create a training model where each image contained 459 

landmarks would be a cumbersome and time consuming process. To alleviate this 

challenge we select 92 key points in each of the training set images (Figure 2 (a)). We 

then interpolate to the required 459 points to track and eventually create the 3D model. 

The interpolation is done using a Catmull-Rom spline.  
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    (a)                    (b)     (c) 

Figure 2. (a) original 92 key points; (b) interpolated 459 points; (c) 8 points for eye 

region 

 

To track the eye region the model consists of 8 key points around the eyes (Figure 2 (c)). 

The points create a “boxed in” region around both of the eyes. This region allows us to 

set the ROI for a separate eye tracking and eye model creation.  

 

3. Scale-Space Topographic 3D Modeling 

3.1  Dynamic 3D appearance for modeling 

Given the feature points tracked, we apply a reference model to align with the tracked 

points. However, in order to create a 3D model representation for each individual frame, 

and to estimate the eye sight orientation, we deform the reference model into the non-

rigid (non-feature) regions of the face. To do so, we extend our previous work based on 

an adaptive mesh [12] to a hierarchical topographic scale-space. Here we used three-

levels of topographic representations with coarse, medium, and fine structures 

respectively.  

 

We treat a face image as a topographic terrain surface, and each pixel can be categorized 

into one of the twelve primitive surface features[10]. The composition of these basic 
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primitives provides a fundamental representation of different skin surface details. Based 

on the topographic primal sketch [10] we have developed a topographic face labeling 

approach to represent and model facial surfaces, and created individual face models by 

adjusting a generic model [12]. Here is the brief overview of our existing approach. 

Given an input image, we can determine the topographic feature on each pixel location 

using a surface patch approximation approach [10].  A continuous surface f(x,y) is used to 

fit the local N by N patch centered at (x,y) ) with the least square error. The topographic 

label is classified according to the extrema values of the second directional derivative of 

the surface. After obtaining the first-order and second order derivatives at (x; y), we can 

construct a 2 by 2 Hessian matrix [10]. The feature labeling is based on the values of 

eigenvalues and eigenvectors, and the gradient magnitude [12][12]. 

 

The results of topographic labeling represent different levels of feature details, depending 

on the variance of the Gaussian smoothing function () and the fitting polynomial patch 

size (N) (both  and N are known as scales). The topographic label map associated with 

the scales is defined as topographic scale-space. The existing applications of topographic 

analysis are limited in a “still” topographic map with a selected scale. As we know, every 

label may represent various features in a specific image.  Various features (e.g., features 

of the human face) may be “screened out” with various “optimal” scales. A small scale 

could produce too much noise or fake features. A large scale may cause the loss of 

important features. Our previous work also shows that too many fake features could 

cause the model adaptation to be distracted. More seriously, it could make the adaptation 

unstable, even causing it to not converge. Too few features will not attract the generic 
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model into the local facial region with expected accuracy. Due to the difficulty to select 

an “optimal” scale, here we propose to represent the facial features in the topographic 

scale space, and modeling faces in a hierarchical structure from a coarse level, to a 

medium level, and a fine level.  Such a procedure will ensure the stable convergence of 

the dynamic mesh to the face region with a constraint of the upper level topographic 

space, thus resulting in an accurate estimation of 3D facial appearances and their sight 

directions.  

 

In our modeling process in the topographic scale-space domain, the dynamic meshes are 

moved by not only the 2-D external force (e.g. topographic gradient) but also the depth 

force (e.g. topographic curvature) for model deformation in multiple scales. Here we take 

the model as a dynamic structure in which the elastic meshes are constructed from nodes 

connected by springs. The external forces of the nodes are used to link the dynamic mesh 

to the observed face image data. The motion for the dynamic node system is formulated 

by a second-order differential equation [9] where the node motion is driven by both 

internal force (e.g., mesh spring stiffness and topographic gradients) and the external 

force (e.g., topographic curvature and the topographic labels.) . 

 

The model adaptation process is performed by three stages: a coarse adaptation onto the 

coarse scale of the topographic map, a medium scale adaptation onto a medium 

topographic map, and a fine adaptation onto the fine scale of the topographic map. The 

three stages employ the similar adaptation algorithm as described in [12], except for 

additional constraints assigned to each level of adaptation. Specifically, the second stage 
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(medium level) requires the node motion in the restricted local topographic region which 

has been defined by the coarse topographic map, and the node motion for the fine level 

adaptation is restricted in the regions which have been defined in the medium 

topographic map.  This strategy will prevent the mesh from distraction, and thus result in 

a stable adaptation.  As a result, the mesh can distribute itself in both salient feature areas 

and facial surface “wave” areas.  

 

3.2 3D Iris modeling and sight direction estimation 

Extending the topographic analysis of face features, we applied a scale-space topographic 

context to conduct an eye model adaptation within the eye region. The procedure is the 

same as the face model creation procedure as described in Section 3.1. After mapping a 

model onto the eye region, we can project a ray from the center of the eyeball sphere to 

the iris center to estimate the eye sight direction. The two 3-D points: centre of eye-ball 

(Pb) and centre of pupil (Pc) are illustrated in Figure 3 (upper row). The line linking the 

two points represents the direction of the eye sight. Note that given the four 3D points 

obtained from two eye-corners, pupil center (Pc), and an arbitrary point on the iris 

boundary, the eye-ball sphere parameters, center Pb and radius r, can be uniquely 

determined. 
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Figure 3. Upper Row: eye sight direction and eye-ball sphere determination based 

on four points; Lower row: eye sight direction in different views. 

 

 

4. Experimental Results 

In order to test the accuracy of our system we used three different cameras with different 

resolutions to capture and track our data. We tested our system with a low, medium, and 

high resolution setting. For our low resolution tests we used a Logitech QuickCam Orbit 

AF with a resolution of 320x240 (as shown in Figure 5). We used a Sony network camera 

SNC-RZ30N with a resolution of 640x480 for our medium resolution tests (as shown in 

Figure 6). Finally, for our high resolution tests we used a Di3D [6] capturing system that 

creates texture images with a resolution of 1040x1392 (as shown in Figure 4). 

 

Although the eye region is contained in the entire face, we found that it is beneficial for 

us to track the eye region separately. Since the only information that we need is where the 

landmarks are located, we have found it easier to only select the landmarks around the 

eyes instead of extracting this information from the face. Also, there are instances where 

we found it difficult to successfully track a subject’s face but we were able to track the 

eye region. We believe that this is due to our use of a person-independent active 
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appearance model. Gross et al. [3] noted that it is harder to fit a generic AAM compared 

to a person specific AAM due to the high dimensionality of the shape model.  

 

4.1 Evaluations 

In order to evaluate the accuracy of the geometric shape of our created models, we used 

the 3D dynamic range scans [13][13] captured from Di3D imaging system [6][6] as the 

ground-true data for comparison (Figure 4).  

 

The ground true face model contains 35,000 vertices; our created model has about 2,900 

vertices.  We used both 3D range model scans and our generated models (300 frame 

models), and manually selected 92 feature points on each model in areas of mouth, facial 

contour, nose sides, nose bridge, eyes, eyebrows and cheek. After normalizing all the 

models into a range of (-50, +50) in three coordinates of x, y and z, we calculate the mean 

square error (MSE) between the two sets of 3D surface feature points. The result shows 

that the average MSE of 300 frames models is 6.74. This is much less than the MSE 

(=12.7) when we compare the coarse models to the range models. In addition, the 

estimated eye directions from our generated models are also compared to the eye 

directions of the range models. Among 300 frames, 249 frames show less than 5 degree 

difference between two data sets.    
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Figure 4. High-resolution video example. Upper: range scans as ground-truth; 

Lower: generated models(3D meshes overlapped on textures). 

 

 

There are three major advantages of the proposed 3D model based approach: (1) the 

modeling procedure relies on the multiple-scale model adaptation in a global face space 

rather than very few individual points in local facial regions. It is more resistant to image 

noises under various imaging conditions; (2) the three-levels of topographic features 

allow the face and eye representations in a high level of detail, and (3) the eye sphere 

estimation is based on the four points including the eye center and eye corners and 

excluding the eyelid points. It has certain robustness to occlusion from eyelids. Unlike 

other conventional 2D tracking systems, our 3D model based eye sight estimation does 

not require any calibration of cameras. 
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Figure 5. Low-resolution videos for two subjects.  Tracked feature points; generated 

models; and detected eye sight directions(shown as red arrows).  

 

5. Discussion 

In this chapter we have presented a scale-space topographic modeling approach to model 

the dynamic facial appearance and eye sight directions. The experimental results are 

encouraging. While we are able to track face movements and eye sight orientations under 

various resolutions, backgrounds, and expressions, the tested pose changes are still in a 

small range. Issues dealing with pose change can better be handled with explicit 3D data 

which we will detail in later chapters. While this is an effective method to create the 3D 

models, the actual deformation of the generic mesh is a fairly expensive operation and 

further study into parallel algorithms will be needed for a real-time application. Next we 

will study the effect multi-frame fusion on face classification.  
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Chapter 3 

Fusion Based Face Classification Under Strong Shadows 

1. Introduction 

The majority of face recognition researches dealt with still images acquired under a 

somewhat controlled setting. The performance improvement of recognition technologies 

using those images has been impressive, as evidenced by the results of Face Recognition 

Vendor Tests [14]. However, the current methods still have difficulties handling data 

obtained under more challenging conditions, such as strong shadows, severe occlusions, 

or large pose variations. To deal with those problems, various approaches have been 

proposed, including 3D face methods [15], video-based methods [16][17][18], 

correlation-filters[30], multi-view methods [19][20], and multi-sample/multi-instance 

methods [21][22][23]. 

 

In this chapter, we examine the performance of a fusion method that integrates multiple 

frames selected from rotating head videos. The objective was to determine whether and 

how the multi-frame fusion can overcome the adverse shadow effect to achieve a 

significantly better recognition rate. We addressed two fundamental issues: (i) How 

effective is multi-frame fusion in handling shadowed faces, if a sophisticated pre-

processing or fusion method (such as a probability density based method) is not 

involved? (ii) Does a multi-frame fusion yield a consistent performance gain? More 

importantly, can we quantify its performance in terms of its data composition? 
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This study has several features: (i) It used a video dataset of 257 subjects, which is 

comparable to that of Multi-PIE database [24]; (ii) Frames of ten pose angles were 

automatically selected; (iii) Because of the regular frame interval, the temporal continuity 

is preserved that characterizes a full head rotation; (iv) A large number of fusion tests 

were conducted. 

 

2. Related Works 

Video-based face recognition bears resemblance to the methods of using multiple still 

images, but the former may deal with a much larger number of frames. Chellappa et al. 

[17] have developed a probabilistic framework that explores the temporal continuity of 

face motion. Other approaches of using manifolds and hidden Markov models were also 

proposed [18][25]. A probabilistic approach has several advantages: (i) It tackles tracking 

and recognition simultaneously; (ii) It is flexible to handle both video-to-image and 

video-to-video matches; (iii) A 3D model can be incorporated. However, the 

computational cost could be high, especially if a very small frame interval is required to 

satisfy continuity constraints. Using a high resolution 3D model (e.g., a deformable finite 

element model) in a video-to-video scenario is even more demanding. 

 

Another popular strategy is to utilize a small number of representative images and 

consolidate the results through a fusion. Many methods can be put into this category, 

such as multi-view method, multi-instance method and multi-sample method. Thomas et 

al. [26] and Canavan et al. [27] found that recognition rate can be greatly improved using 

fused video frames. Faltemier et al. [21] applied a similar strategy to a 3D face dataset 
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and found that the multi-instance method outperforms a component based method. 

Recently, a mosaicing approach was proposed that utilizes a composite model from 

images of different poses [19].   

3. Multi-Frame Fusion Based Method 

3.1  Video Dataset 

Videos of 257 subjects were collected in two sessions. The second session occurred about 

5-9 weeks after the first one. 167 subjects attended both sessions and 90 subjects 

appeared in the first session only. During each session, subjects rotated their heads in the 

range of 0° to 90°. Two illumination conditions were considered: (i) Normal indoor 

lighting; (ii) Strong shadow. Figure 6 shows some examples. 

 
Figure 6. Upper four rows: Samples showing the different views with two different 

illuminations.  Bottom row shows an example of two-sessions: Left four: first session 

with two different illuminations; Right two: second session of the same subject. 
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3.2  Frame Selection 

Ten frames were selected from each video corresponding to ten pose angles (0
o
, 10

o
, 20

o
, 

30
o
, 40

o
, 50

o
, 60

o
, 70

o
, 80

o
, 90

o
), with 0

o
 for the frontal view and 90

o
 for the profile view. 

Both manual and automatic methods were used. Manually selected frames were used to 

benchmark the automatically selected ones. We applied a PCA approach for automatic 

pose estimation. We collected training data from BU-3DFE database [31] with ten 

different views from 0° to 90°. After applying the PCA transformation, we obtain the 

eigen-faces with different views. In the eigen-space, ten clusters are clustered 

corresponding to ten poses. Given a face image, we project it to the eigen-space and 

classify to one of the cluster using a K-NN classifier. Following this procedure, we detect 

ten poses from the video input (see [32] for details). The automatic pose detection 

process allows us to study the multiple-pose fusion performance in the subsequent 

experiment.  

 

3.3  Training, Gallery and Probe sets 

The training set contains 90 subjects who appeared only in the first session. The 

gallery/probe sets include 167 subjects who enrolled in both sessions. The gallery has the 

frames of normal lighting condition, while the probe has frame of shadows (Table 1). 

This protocol is similar to that of FRVT 2006 [14], which ensures the independence 

between the training and test data.  
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Table 1. Training, Gallery, and Probe sets. 

Training Gallery Probe 

90 subjects.   

In the 1st session 

only. 

Normal + 

Shadow.  

167 subjects. 

In the 1st session. 

Normal lighting.  

167 subjects. 

In the 2nd session. 

Strong shadow. 

 

It should be emphasized that, besides shadows, a few other factors make the dataset very 

challenging. As shown in Figure 7, there exit large discrepancies between the 

appearances of the same person in gallery and probe, which could be caused by facial 

expressions, glasses, jewelry, mustaches and long hair. 

 

Figure 7. Large differences between faces in the gallery and probe sets that could 

cause problems to the methods that use a single image per subject. 

 

Pose 0
o
 20

o
 40

o
 60

o
 

Gallery 

    

Probe 

    

Factors Shadows Glasses Expression Long Hair 
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3.4  Fusion Schemes 

Each of the facial poses provides a matching score, which is a similarity measure (e.g., 

distances) between the images. We used a score level fusion method [22] that was 

implemented in two steps. In the first step, ten basic score matrices were generated using 

a PCA (Principle Component Analysis) eigen-face method [28][29], one for each of the 

ten pose angles. For example, to create a basic score matrix for the 20
o
 pose angle, a PCA 

test would be run using only the frames of 20
o
 in the training, gallery and probe sets. In 

the second step, fusions were carried out by combining the subsets of ten basic matrices 

with the sum rule [22][27] (i.e., summation of the scores.) Therefore, an exhaustive 

evaluation requires a total of 1023 fusion tests: 1023 = C(10, 1) + C(10, 2) + … + C(10, 

10), where C(n, k) = n!/(k!(n-k)!) is the binomial coefficient (see Table 2). 

 

Table 2. Exhaustive Fusion Tests. 

Fusion Group Examples of frame combinations 

C(10, 1) = 10 (0
o
), (10

o
), (20

o
), (30

o
), (40

o
), (50

o
), (60

o
), (70

o
), (80

o
), 

(90
 o
) 

C(10, 2) = 45 (0
o
, 10

o
), (80

o
, 90

o
) 

C(10, 3) = 120 (0
o
, 10

o
, 20

o
), (40

o
, 80

o
, 90

o
) 

C(10, 4) = 210 (0
o
, 10

o
, 20

o
, 30

o
), (10

o
, 20

o
, 60

o
, 90

o
) 

C(10, 5) = 252 (0
o
, 10

o
, 20

o
, 30

o
, 40

o
),  (10

o
, 30

o
, 40

o
, 60

o
, 80

o
) 

C(10, 6) = 210 (0
o
,10

o
,20

o
,30

o
,40

o
,50

o
) 

C(10, 7) = 120 (0
o
,10

o
,20

o
,30

o
,40

o
,50

o
,60

o
) 

C(10, 8) = 45 (0
o
,10

o
,20

o
,30

o
,40

o
,50

o
,60

o
,70

o
) 

C(10, 9) = 10 (0
o
,10

o
,20

o
,30

o
,40

o
,50

o
,60

o
,70

o
,80

o
) 

C(10, 10) = 1 (0
o
, 10

o
, 20

o
, 30

o
, 40

o
, 50

o
, 60

o
, 70

o
, 80

o
, 90

o
) 

Total = 1023  

 

3.5  Measuring Inter-frame Variation 

In order for a multi-frame method to be effective, the frames used in a fusion should be as 

diverse as possible (i.e., smaller similarity). So, we adopted a similarity measure based on 
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the mutual information. For two frames A, B, let PA(a) be the probability density that a 

point chosen (uniformly) at random is of intensity a in frame A, and let PA,B(a,b) be the 

joint probability density that a point chosen at random is of intensity a in frame A, and the 

same point is of intensity b in frame B.  Then the similarity measure I(A,B) is defined as 

follows: 

(𝐴, 𝐵) =  ∬ 𝑃𝐴,𝐵(𝑎, 𝑏) log (
𝑃𝐴,𝐵(𝑎, 𝑏)

𝑃𝐴(𝑎)𝑃𝐵(𝑏)
) 𝑑𝑎𝑑𝑏 (1) 

) 

 

Using I(A,B), we devised an inter-frame variation metric for a 2-frame fusion: 

              𝜏2(𝑖, 𝑗) =
∑ (

1

𝐼𝑘(𝑖,𝑗)
)𝑁

𝑘=1

𝑁
, 𝑖, 𝑗 ∈ [0𝑜 , 10𝑜 , … , 90𝑜] (2))) 

   where τ2 denotes inter-frame variation,  N  is the size of a data set. In other words, τ2 

measures the dissimilarity of two frames averaged over all subjects in a data set. In case 

that a fusion has more than two frames, we first calculate the τ2 values of all possible 2-

frame pairs and then take their average as the τ of that fusion.  

Table 3. Statistics of Rank-1 Fusion Tests. 

Fusion Group 
Rank-1 Rate 

Min Max Average Std. Dev. 

C(10, 1) = 10 0.31 0.48 0.39 0.05 

C(10, 2) = 45 0.41 0.62 0.53 0.05 

C(10, 3) = 120 0.50 0.71 0.62 0.05 

C(10, 4) = 210 0.56 0.78 0.67 0.04 

C(10, 5) = 252 0.59 0.81 0.71 0.04 

C(10, 6) = 210 0.66 0.81 0.74 0.03 

C(10, 7) = 120 0.70 0.81 0.76 0.03 

C(10, 8) = 45 0.73 0.81 0.77 0.02 

C(10, 9) = 10 0.75 0.81 0.78 0.02 

C(10, 10) = 1 0.78 0.78 0.78 N/A 
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4. Experimental Results and Discussions 

4.1  Improvement by Multi-frame Fusion 

The rank-1 rates of 1023 fusion tests were summarized in Table 3, and were plotted in 

Figure 3 and Figure 4 for CMC curves of a fusion test series. It is clear that the 

performance of multi-frame fusion steadily improves as the number of frames increases. 

On average, the fusion method almost doubled the recognition rate, from 40% with a 

single frame to 80% with ten frames. This is a significant improvement, considering that 

the dataset used is quite challenging. 

 

In a fusion group that has the same number of frames, the recognition rate showed some 

fluctuations. For example, in the 3-frame group, the fusion of (0
o
, 40

o
, 90

o
) had the 

highest recognition rate of 0.713, while the fusion of (70
o
, 80

o
, 90

o
) had the lowest value 

of 0.503. However, as the number of frames in a fusion increased, the differences among 

individual fusion tests became less noticeable. At the same time, the fusion performance 

also leveled off. Adding more frames would not lead to a sizable performance gain. This 

saturation effect was also observed in other studies [26][27], suggesting the existence of a 

performance upper-bound that is likely dependent upon the quality of dataset being used 

as well as the efficiency of recognition and fusion algorithms. 
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Figure 8. Relationship between the 

rank-1 rate and the number of frames 

used in fusion. For each group of 

fusion tests that contains the same 

number of frames, its average is also 

shown. 

 

 
Figure 9. The CMC curves of a fusion 

test series: (𝟎𝒐), (𝟎𝒐, 𝟎𝟏𝟎𝒐), 

(𝟎𝒐, 𝟏𝟎𝒐, 𝟐𝟎𝒐),…, 

(𝟎𝒐, 𝟏𝟎𝒐, 𝟐𝟎𝒐, … , 𝟖𝟎𝒐𝟗𝟎𝒐). For 

visualization purposes, only 1-frame, 

2-frame, 4-frame, 6-frame, and 10-

frame tests are shown. 

 

4.2  Inter-frame Variation 

Since a fusion group of the same number of frames but different combinations showed 

large recognition rate variations, it is important to seek the underlying cause in a 

quantitative fashion. To this end, we calculated an inter-frame variation value for each 

fusion test using Eq. (2). The results of three representative groups (2-frame, 3-frame and 

5-frame) were plotted against the Fusion Improvement Ratio (FIR) in Figure 10.  The 

FIR was computed by: 

𝐹𝐼𝑅 =  
𝑅𝑚

(
∑ 𝑟𝑖

𝑚
𝑖=1

𝑚
)

𝑖 ∈ m (3))) 

where Rm is the recognition rate of an m-frame fusion, ri is the single-frame recognition 

rate using the ith member of the m frames. So, FIR measures the performance 

improvement of an m-frame fusion over the average of its individual members. 
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A positive correlation between the FIR and the inter-frame variation can be observed 

(Figure 10). This suggests that a fusion of more diverse samples is likely to produce a 

better recognition rate. For example, in a 4-frame group, the fusion of (0
o
, 20

o
, 40

o
, 90

o
) 

had the highest recognition rate of 0.784, while the fusion of (60
o
, 70

o
, 80

o
, 90

o
) gave the 

lowest rate of 0.557. Apparently, (0
o
, 20

o
, 40

o
, 90

o
) is more representative of a full 90 

degree head rotation than (60
o
, 70

o
, 80

o
, 90

o
) is, because the faces in 60

o
, 70

o
, 80

o
, and 

90
o
 poses are very similar to each other (see Figure 1). In other words, the first fusion 

combination reveals more about the 3D shape of a face than the second one does. 

 

The above observations is also extendible to the multi-sample approach, multi-enrollment 

approach, and even the multi-modal approach, where the selection of samples or 

biometric modalities should be guided by certain inter-sample or inter-modality variation 

index in order to maximize the performance gain. 

 

 
Figure 10. Inter-frame variation and the FIR (Fusion Improvement Ratio) 

relationship. 
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5. Discussion 

This chapter presented a multi-frame fusion study and evaluation that exploits the 

coherent intensity variations in head rotation videos to facilitate recognition under 

adverse shadow conditions. It is a fairly efficient algorithm as the score based fusion is 

fast and has minimal overhead. An interesting extension would be parallel algorithms for 

the recognition. Each of the degrees could be recognized in parallel to help speed up the 

algorithm even more. Based on the tests of 1023 fusion combinations using 257 subjects 

and 10 frames per subject, the following observations can be made: (i) multi-frame fusion 

is an effective method to improve video face recognition. In a multi-frame to multi-frame 

scenario, the recognition rate was almost doubled; (ii) the performance of a particular 

fusion choice has a strong connection to its inter-frame variation.  
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Chapter 4 

3D Face Sketch Modeling and Recognition 

1. Introduction 

Face sketches can be drawn either by a trained police artist or using a composite software 

kit [33][34]. Both types of sketches have been studied in the context of searching or 

matching a sketch to a subject’s face in a database of photos or mug-shots 

[35][36][37][38][39][40]. Since all existing works were based on 2D sketches, issues of 

pose variations are still challenging. Recently, 3D face recognition has attracted much 

attention [14] [15][43][44]. Along the same vein, 3D sketch models reconstructed from 

2D sketches may improve sketch recognition performance. In order to increase the 

accuracy of geometric surface matching and efficiency of similarity measurement 

between 3D faces and probe sketch data, it is highly demanded to have 3D sketches 

matched up with the 3D scan models.  Nevertheless, there is little investigation reported 

on 3D sketch modeling and 3D sketch recognition in the past. 

 

In this chapter, we address the issue of 3D sketch model construction from 2D sketches, 

and compare the 3D sketch models with the corresponding 3D facial scans. We further 

validate the models by conducting 3D face sketch identification on two 3D face 

databases. Note that there is no existing graphic tool for 3D sketch model construction 

from witness’ description directly.  One solution is to create 3D sketch models based on 

2D sketches from hand-drawings by artists or conversion from 2D images [41][42]. 
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To build 3D sketch models, we applied a scale-space topographic feature representation 

approach to model the facial sketch appearance explicitly. We initially tracked 92 key 

facial landmarks using an active appearance model (AAM) [2], and then interpolated to 

459. From the interpolated landmarks, we used a 3D geometric reference model to create 

individual faces. Based on the topographic features obtained from the sketch images, we 

applied a mesh adaptation method to instantiate the model. 

 

In order to assess the quality of created 3D sketch models, we conducted a comparison 

study between the created 3D sketch models and their corresponding ground-true 3D 

scans. We show the difference between two data sets as well as the difference between 

the 3D sketch models created from hand-drawn sketches and the 3D sketch models 

created from machine-derived sketches.  Moreover, in order to validate the utility of the 

3D sketch models, we propose a new approach to decompose the 3D model into 6 

independent component regions, and apply a spatial HMM model for sketch model 

recognition.  The 3D sketch face recognition experiment is conducted on two databases: 

BU-4DFE [13] and YSU sketch database [46]. 

 

2. Source Data 

Face database BU-4DFE [13] and YSU sketch database [46] have been used as our data 

source. Sample 3D scans of BU-4DFE are shown in Figure 11. The corresponding 2D 

textures are shown in Figure 2 (first row).  
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Based on six subjects of 4DFE, two forensic artists from Youngstown State University 

drew the corresponding 2D sketches of the same subjects.  Thus we obtained Hand-

Drawn (HD) sketch images of six subjects. Figure 2 (row-2) shows several samples of 

HD 2D-sketches.  

 

Due to the time-consuming and intensive work of artist drawing, we created 2D sketches 

from 2D texture images of the 4DFE database. Our method can simulate the pencil sketch 

effect.  The texture to sketch conversion follows a three-step image processing procedure: 

First, the image is processed by a de-saturation process, then the image is inverted. After 

applying a color dodge, the image is blurred with a Gaussian filter. Finally, the radius of 

pixels is adjusted to get an ideal sketch effect. Figure 12 (row-3) shows examples of MD 

2D-sketch images. We have also used YSU hand-drawn 2D facial sketches with 250 

sketches.  Figure 13 (row-1) shows examples of YSU HD 2D-sketches. 

 

 
Figure 11. Examples of 3D scans from 4DFE: textured models shown in upper row 

and shaded models in bottom row 
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Figure 12. Examples of 2D images of 4DFE from top to bottom: Original textures 

(row-1); hand-drawn(HD) 2D sketches (row-2), and Machine-derive(MD) 2D 

sketches(row-3). Rows 4-5: Created 3D sketches from HD sketches with textures 

and mesh models in different views. Rows 6-7: Created 3D sketches from MD 

sketches with textures and mesh models in different views. 
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Figure 13. Samples of YSU 2D sketch database(row-1) and the reconstructed 3D 

sketches(rows 2-3). Row-4 shows synthesized 3D sketches with rotated heads on the 

corresponding shoulders. 

 

 

3. 3D Sketches Creation from 2D Sketches 

3.1  3D sketch reconstructions 

To build 3D sketch models, we developed a scale-space topographic feature 

representation approach to model the facial sketch appearance explicitly. Using an AAM 

we initially tracked 92 key facial landmarks, and then interpolated them to 459 using a 

Catmull-Rom spline [12] (as shown in Figure 14 (a)). 

 
                                (a)                        (b) 

Figure 14. (a) Illustration of 459 point on a sample face; (b) 83 features point for 

evaluation. 
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From the interpolated landmarks, we used a 3D geometric reference model to create 

individual faces. The reference model consists of 3,000 vertices. Based on the 

topographic labels [45] and curvatures obtained from the sketch images, we then applied 

a spring-mass motion equation [9] to converge the reference model to the sketch 

topographic surfaces in both horizontal and depth directions. Existing topographic 

labeling approaches can create different levels of feature detail, depending on the 

variance of the Gaussian smoothing function () and the fitting polynomial patch size (N) 

(both  and N are called scales). The existing applications of topographic analysis are 

limited in a “still” topographic map with a selected scale.   Every label may represent 

various features in a specific image, various features (e.g., on the organs in the human 

face) may be “screened out” with various “optimal” scales. The idea of scale is critical 

for a symbolic description of the significant changes in images. A small scale could 

produce too much noise or fake features. A large scale may cause the loss of important 

features. Too many fake features could cause the model adaptation be distracted. More 

seriously, it could cause the adaptation to be unstable, (e.g., even not converge). Too few 

features will not attract the generic model into the local facial region with expected 

accuracy. Due to the difficulty to select an “optimal” scale, here we use a multi-scale 

analysis approach to represent the topographic features from a coarse level to a fine level 

as the scale varies. Applying the topographic labeling algorithm with different scales, we 

generated the topographic label maps of facial images at different levels of detail.  

Different scales will be applied to different levels of details of sketch images (e.g., hand-

drawn (fine details) or machine derived (coarse details). 
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In order to deform the face model into the non-rigid facial area, we applied the adaptive 

mesh [9] to the facial areas in the multi-scale topographic domain. Such dynamic meshes 

are moved by not only the 2-D external force (e.g. topographic gradient) but also the 

depth force (e.g. topographic curvature) for model deformation in multiple scales. We 

take the model as a dynamic structure, in which the elastic meshes are constructed from 

nodes connected by springs. The 3D external force is decomposed into two components: 

the gradients of the topographic surface are applied to the image plane, and the curvatures 

of the topographic surface are applied as a force to pull or deflect meshes in the direction 

perpendicular to the image plane. As a result, the 3D shape of mesh becomes consistent 

with the face surface. This procedure was performed based on a series of numerical 

iterations until the node velocity and acceleration were close to zero. Such a mesh 

adaptation method was applied to sketch regions to instantiate the model. Figure 2 and 

Figure 3 shows examples of 3D sketch models reconstructed from 2D sketches for both 

HD and MD data.  

 

3.2  3D sketch accuracy evaluation 

(1) Comparison: 3D HD sketches vs. 3D scans 

We also conducted an objective evaluation, by which we calculated the error between the 

feature points on the individualized sketch models and the corresponding manually 

picked points on the face scans. We selected 83 key points as the ground truth for 

assessment (see Figure 14 (b)). After creating sketch models from 4DFE, we conduct a 

quantitative measurement as follows: First, we normalize all the models into a range of [-

50, 50] in three coordinates of x, y, and z. We then calculate the mean square error (MSE) 
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between the feature points of the 3D sketch and the ground truth of a set of models. We 

define the one-point spacing as a closest pair of points on the 3D scans, which is 

approximately 0.5mm on the geometric surface of the 4DFE models. The mean error of 

two models can be computed by the average of point differences between two models. 

Figure 15 shows the error statistics, which is the average error and standard deviation on 

each of the 83 key points. The result shows that the MSE of the examined points is 8.71 

point spacings. The average error ranges from 1 to 16 point spacings, with the most of 

points being less than 10 point spacings. The errors mainly lie in the left side and right 

side of the face contour and chin area, which are points 69-83. 

 

 
Figure 15. Error statistics of selected 83 testing vertices of a set of models (3D HD-

sketch models and 3D scans). Mid-point of each line represents an average error of 

the vertex (MSE). The standard deviation is shown by the length of the line. 

 

(2) Comparison: 3D MD sketches vs. 3D scans 

Similar to the above assessment, we also compare the difference between the 3D scans 

and 3D sketch models created from the MD sketches. Figure 16 shows the error statistics 

of the 83 points of 100 models. The MSE of the examined points is 6.84 point spacings. 
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The MD sketch models show more accuracy than the HD sketches. The reason is that the 

MD sketches are derived from the 2D textures of 4DFE, thus, a better alignment can be 

obtained between the 3D sketches and 3D scans.  

 

 
Figure 16. Error statistics of selected 83 testing vertices of a set of model (3D MD-

sketch models and 3D scans). 
 

(3) Comparison: 3D HD vs. MD 

In order to examine the similarity of the HD sketches and MD sketches. We compare the 

3D sketch models created from hand drawn sketch image to the 3D sketch models created 

from machine generated sketch images.  The MSE of the 83 points among those models 

is 3.78 point-spacings, which are very similar to each other.  Figure 17 shows the error 

statistics. The results justify the approximate equivalence of both MD models and HD 

models, which can be used by subsequence study for face recognition. 
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Figure 17. Error statistics of selected 83 testing vertices of a set of models (3D MD-

sketch and 3D HD-sketch models). 

 

4. 3D Sketch Face Recognition 

In order to validate the utility of the created 3D sketch models, we conducted 

experiments of 3D sketch model identification. To do so, we segment each sketch model 

and each scan model into six component regions. A conventional set of surface label 

features are used for the spatial HMM classification.  

 

 

4.1  Component region segmentation 

Given a 3D sketch model and the tracked feature points, we can easily segment the facial 

model into several component regions, such as the eyes, nose and mouth.  However, 

without any assumption of feature points detected on the 3D scans, it is needed to 

automatically segment facial regions by a more general approach. We developed a simple 

yet effective approach for 3D facial component segmentation. This approach is general 

enough to be applicable to other kinds of mesh models, including 3D sketch models.  The 
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component segmentation works on the geometric surface directly. It includes mainly two 

steps:  

 

(1) Edge Vertices (EV) determination: Since the edge-feature-rich regions of a 3D facial 

model lie in regions of eyes, mouth, and nose, we detect edge vertices based on their 

vertex normals. To do so,   a normal mapping scheme is used, where each vertex is 

assigned by a pseudo-color pc= (r, g, b).  pc is assigned by the corresponding vertex 

normal n, i.e., pc = n= (nx, ny, nz). Emulating the color to grayscale conversion, each 

vertex is assigned by an attribute value va: 

 

𝑣𝑎 = 0.299 | 𝑛𝑥 | + 0.587 | 𝑛𝑦| + 0.114 |𝑛𝑧| (4))) 

  

Initially, an edge vertex can be calculated by iterating through the neighbors of each 

vertex and calculating the difference (da) between va of the vertex and the average va of 

its neighbors. Thresholding on da values could indicate the edge vertices, however, it may 

not generate a reliable result. Rather than using a threshold, we apply a clustering method 

to get two groups of vertices: edge and non-edge vertices. To do so, a k-means clustering 

algorithm is applied, where k=2, to determine the two groups according to the da values. 

Whichever cluster a vertex is closer to (edge or non-edge), that vertex will be added to 

the corresponding cluster. This procedure is iterated until the centroids of the clusters 

remain unchanged. 

Once we have obtained these edge vertices, a rectangular bounding box of the face model 

can be determined by a convex-hull of the edge vertices. We can also find the vertex with 
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the highest z value of those edges, which is the vertex closest to the nose tip. Note that 

the top one-fourth of the face model is ignored to avoid noise from hair.  

 

(2) Component regions determination: Within the bounding box of a facial model, we 

start to use four edge vertices as the initial centroids to cluster the edge vertices into four 

component regions, which are left eye, right eye, nose, and mouth. The initial centroids 

are determined simply by four edge vertices within the bounding box, which are top-left, 

top-right, mid-bottom, and vertex close to nose tip, respectively. The k-means clustering 

method (k=4) is applied using Euclidean distances of edge vertices to the four centroids. 

The centroids of four regions are updated iteratively until they remain unchanged. As a 

result, four component regions are detected. Furthermore, the nose bridge region can be 

determined by the eye and nose boundaries, and the top of the convex hull.  The 

complementary region of the five component regions within the face convex-hull forms 

the sixth component region. Figure 18(a) shows an example of the resulting 

segmentation. 

 

 
        (a)      (b)                       (c) 

Figure 18. (a) Sample of component regions; (b) Sample of labeled surface of a 

sketch model, and (c) a component-based HMM based on six component regions. 
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4.2 3D component feature representation 

3D facial models of both scans and sketches can be characterized by their surface 

primitive features. This spatial feature can be classified by eight types: convex peak, 

convex cylinder, convex saddle, minimal surface, concave saddle, concave cylinder, 

concave pit, and planar. Such a local shape descriptor provides a robust facial surface 

representation [45][48]. To label the model surface, we select the vertices of the 

component regions, and then classify them into one of the primitive labels. The 

classification of surface vertices is based on the surface curvature computation [48]. After 

calculating the curvature values of each vertex, we use the categorization method [47] to 

label each vertex on the range model. As a result, each range model is represented by a 

group of labels, which construct a feature vector: G = (g1, g2, ..., gn), where gi represents 

one of the primitive shape labels, n equals the number of vertices in the component 

region. An example of the labeled surface is shown in Figure 18 (b). 

 

Due to the high dimensionality of the feature vector G, where each of six component-

regions contains vertices ranging from 300 to 700, we use a Linear Discriminant Analysis 

(LDA) based method to reduce the feature space of each region. The LDA transformation 

is to map the feature space into an optimal space that is easy to differentiate different 

subjects. Then, it will transform the n-dimensional feature G to the d-dimensional 

optimized feature OG (d<n).  
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4.3 Spatial HMM model classification 

In each frame, the 3D facial model is subdivided into six components (sub-regions) C1, 

C2, C3, C4, C5, and C6, as shown in Figure 18 (c), including regions of the eyes, nose, 

nose bridge, mouth, and the remaining face.   From C1 to C6, we construct a 1-

dimensional HMM which consists of the six states (N = 6), corresponding to six regions. 

As aforementioned, we transform the labeled surface to the optimized feature space using 

LDA transformation. Given such an observation of each sub-region, we can train the 

HMM for each subject. Given a query sketch face model sequence of a length k, we 

compute the likelihood score for each frame, and use the Bayesian decision rule to decide 

which subject each frame is classified to. Since we obtain the k results for k frames, we 

take a majority voting strategy to make a final decision. As such, the query model 

sequence is recognized as subject Y if Y is the majority result among k frames. This 

method tracks spatial dynamics of 3D facial sketches, the spatial components of a face 

gives rise to the spatial HMM to infer the likelihood of each query model. Note that if k is 

equal to 1, the query sketch model sequence becomes a single sketch model for 

classification.   

 

5. Experiments of Face Recognition 

5.1 4DFE: 3D sketch(training) vs. 3D sketch(testing 

The 3D sketch models include 3D models created from both HD sketch images and MD 

sketch images.  For each subject, we randomly select 50% of the model frames for 

training, the remaining 50% of the data for test. For subjects with HD models, we also 

include half of the data in the training set, and the rest are included in the test set.  
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For each training sequence of 4DFE, 20 sets of three consecutive frames were randomly 

chosen for training.  Following the HMM training procedure (k=3), we generated an 

HMM for each subject. The recognition procedure is then applied to classify the identity 

of each input sketch sequence (k=3) as the previous section described. Based on the 10-

fold cross validation approach, the correct recognition rate is about 95.5%. The ROC 

curve is shown in Figure 9. 

 

5.2 4DFE: 3D scans(training) vs. 3D sketches(testing) 

In order to validate the utility of the 3D sketches with respect to the 3D scans, we 

conducted the 3D sketch classification against the corresponding 3D scans.  Similar to the 

above approach, for each subject, we randomly select 20 sets of three consecutive 3D 

scans for training.  Following the HMM training procedure, we generated an HMM for 

each subject. The recognition procedure is then applied to classify the identity of each 

input 3D sketch sequence (k=3). Based on the 10-fold cross validation approach, the 

correct recognition rate is about 89.4%. The ROC curve is shown in Figure 19. 

 

5.3 YSU: 3D sketch(training) vs. 3D sketch(testing) 

The validation has also been conducted on the 3D sketch models created from YSU 

sketch database, where sketches from 50 subjects are created. Each subject has five 

sketches drawn by five artists separately. There are 250 sketches in total. For each 

subject, we randomly select 4 sketches for training, the remaining one for test. Following 

the HMM training procedure (k=1), we generated an HMM for each subject. The 

recognition procedure is then applied to classify the identity of each input sketch model 
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(k=1). Based on the 10-fold cross validation approach, the correct recognition rate is 

about 92.6% (see ROC curve of Fig. 19). 

 

 
Figure 19. ROC curves of 3D sketch face recognition. 

 

Due to the sketches drawn from different artists in the YSU database, the variation of the 

sketch styles and the single model query plus single model training of HMM degrades the 

recognition performance as compared to the 4DFE case (sketches-to-sketches). However, 

the cross modality matching between 3D scans (training) and 3D sketches (testing) shows 

the challenge for classification as the 3D sketches created from 2D images may not match 

well to the ground true data (3D scans). A further study using a more advanced classifier 

will be investigated in future work. 

 

6. Discussion 

This chapter addressed the issues of 3D sketch modeling and its validation through 3D 

sketch recognition using a component based spatial HMM. The quality of 3D sketch 

models is evaluated by comparing to the corresponding ground-truth 3D scans. We have 

also shown the approximate equivalence of models between the 3D sketches from HD 
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and MD. Among the test data (4DFE and YSU databases), on average a 92% correct 

recognition rate has been achieved for 3D sketch model identification. While the results 

are promising, this would have more real world significance if it could be accomplished 

in a real-time setting. Looking into parallel algorithms for construction of the model is a 

future topic left to discussion. 
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Chapter 5 

Facial Activity Analysis in 3D/4D Space 

1. Introduction 

Facial activity analysis using 3D videos has become an intensified research topic in 

recent years [60][72][73][74]. 3D representation of real life objects allows for a more 

realistic behavior analysis and understanding. However, it is difficult to process the data 

in a 3D dynamic space. The major challenges lie in the difficulties of 3D data 

registration, 3D feature extraction, and 3D data description. In this chapter, we 

investigate approaches for effective 3D feature representations in order to characterize 

the dynamic geometric features across time for facial activity analysis. 

 

Dynamic Texture (DT) is an effective method for appearance-based facial analysis from 

consecutive video-frames [75]. Some existing approaches to represent and extract 

dynamic textures were based on optical flow [79], motion history images [78], volume 

local binary patterns [77], and free form deformation [76]. Dynamic texture based 

methods have been successfully used for applications in facial expression recognition 

[77][78][79]. However, they are essentially 2D-based approaches with limitations of 

various imaging conditions (e.g., illuminations, poses, etc.). 

 

Motivated by the dynamic texture approaches from 2D videos, we propose a new 

approach to describe the 3D facial activity in 3D videos, which is dynamic curvature in a 
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3D dynamic space for facial activity analysis. We segment the 3D facial meshes into 

several isolated local regions based on facial actions. Then, the histograms of shape-index 

from curvatures across multi-frame geometric surfaces are concatenated to form a unique 

descriptor - dynamic curvature for 3D facial behavior representation. Such a descriptor 

that represents the temporal dynamics of the facial surface will be input to a classifier 

(e.g, SVM) for further classification of facial activities (e.g., expressions, identities, etc.).   

 

In order to segment the facial regions, it is critical to detect and track facial features 

across 3D geometric sequences. While research in 2D modality based tracking has 

produced a number of successful and widely used algorithms [57][80][81][56][58][52], 

research on 3D modality based analysis still faces the challenges of geometric landmark 

detection, mesh registration, motion tracking, and data representation. Traditionally, 

feature detection in 3D geometric space was performed by registration or 2D-to-3D 

mapping methods on static models [52][53][50][58][51][59][54][55].  In this chapter, we 

apply a tracking model constructed from a temporal 3D point distribution for this task.    

 

We will evaluate the performance through an application for facial activity classification: 

neutral vs. non-neutral; six prototypic expressions; and the status of expression activity in 

low intensity vs. in high intensity.  

 

The rest of the chapter is organized as follows: Section 2 provides a brief description of 

our tracking model. Section 3 describes dynamic curvature based 3D feature 

representation. Section 4 reports experiments and evaluations on the feature point 
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detection and dynamic curvature classification for facial activity recognition. Finally, 

discussion and conclusion are given in Section 5. 

 

2. 3D Shape Tracking Model 

3D range data exhibits shapes of facial surfaces explicitly. This shape representation 

provides a direct match with the 3D active shape model due to its inherent and explicit 

shape representation in 3D space. We present a 3D shape tracking model to describe the 

shape variation across the 3D sequences.  

 

To construct a shape model, we apply a similar representation of the point distribution 

model to describe the 3D shape, in which a parameterized model S is constructed by 83 

landmark points on each model frame. An example of landmark points is shown in Figure 

1. Such a set of feature points (shape vector) is aligned by a Procrustes analysis method 

[56]. Then the principal component analysis (PCA) is then performed on the new aligned 

feature vector. This is done to estimate the different variations of all the training shape 

data. To do so, each shape deviation from the mean and the covariance matrix are 

calculated, resulting in the modes of variation, V, of the training shapes along the 

principal axes. Given V and a vector of weights, w, that controls the shape, we can 

approximate any shape from the training data by: 

𝑆 = �̅� + 𝑉𝑤 (5))) 

The vector of weights, w, allows us to generate new samples by varying its parameters 

within certain limits.   
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When approximating a new shape S, the point distribution model is constrained by both 

the variations in shape and the shapes of neighbor frames. Figure 20 shows an example of 

the shape model and the tracked 83 feature points.  The detailed algorithm is described in 

[82]. 

 

 
Figure 20. Example of tracked 83 feature points on a surprise expression sequence. 

 

3. Dynamic Curvature Based Approach 

Given the detected facial features and the resulting local regions, the shape (curvature) 

change along the 3D model sequences can be observed in individual local regions.  

Inspired by the recent work on facial analysis from static curvature based approaches [51] 

and dynamic texture based approaches [76][77], we propose a so-called Dynamic 

Curvature based descriptor for facial activity classification. Visual texture of an object is 

the reflection of its physical surface and lighting reflectance. Physical surface of an object 

can be characterized by its surface descriptor, e.g., primitive curvature type, shape-index, 

normal, etc. Given this observation, we extend the concept of Dynamic Texture in 2D 

space to the concept of Dynamic Curvature in 3D space (Dynamic Shape-Index).  Unlike 

dynamic texture based approaches, which require building a rotation/scale invariant 
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vector for feature representation, we use 3D shape descriptors (e.g., primitive curvature 

types, shape index) as our feature representation. Curvature is a good representation of 

local surface geometric characteristics. It is invariant to affine transformation like shift or 

rotation. Facial surface change reflects facial expression change. Encoding the surface 

changes of local facial region using dynamic curvature representation, we are able to 

capture the temporal dynamics of facial surface for expression classification.  

After the model regions have been localized, the regional shape is described and 

quantified by curvature based shape-index. The dynamic curvature descriptor is then 

generated for classification.  

 

3.1  Shape description and quantization 

Shape index is a quantitative measure of the shape of a surface at a point [60][61].  It 

gives a numerical value to a shape thus making it possible to mathematically compare 

shapes and categorize them. Shape Index is defined as follows:   

𝑆 =
2

𝜋
× 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑘2 + 𝑘1

𝑘2 − 𝑘1
) (6))) 

where k1 and k2 are the principal (minimum and maximum) curvatures of the surface, 

with k2 >= k1. With this definition, all shapes can be mapped on the range [-1.0, 1.0]. 

Every distinct surface shape corresponds to a unique shape index value. The shape index 

is computed for each point on the model. We use a cubic polynomial fitting approach to 

compute the eigen-values of the Weingarten Matrix [60], resulting in the minimum and 

maximum curvatures (k1, k2). The shape index scale is normalized to [0, 1], and encoded 

as a continuous range of grey-level values between 1 and 255.  To quantify the curvature 
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based measurement for an efficient description of a model, we transform the shape index 

scale to a set of nine quantization values from concave to convex, namely (1) Cup (0); (2) 

Trough (0.125); (3) Rut Saddle (0.25); (4) Rut (0.375); (5) Saddle (0.5); (6) Saddle Ridge 

(0.625); (7) Ridge (0.75); (8) Dome (0.875); and (9) Cap (1), as shown in Figure 21. 

 

 
      0           0.125     0.25         0.375         0.5          0.625        0.75        0.875           1 

Figure 21. Shape index quantization to nine values: Cup(0), Trough(0.125), Rut 

Saddle(0.25), Rut(0.375), Saddle(0.5), Ridge(0.625), Dome(0.875), and Cap(1). 
 

3.2  Dynamic Curvature Based Descriptor 

Until this stage, each vertex on the 3D face model has been assigned a curvature-based 

label (i.e., quantized shape index) based on the above shape analysis. Since each facial 

model is segmented into 8 sub-regions (e.g., eyes, nose, mouth, cheek, etc. as shown in 

Figure 22) from the set of tracked feature points, we are able to get the curvature 

distribution of each sub-region and combine them into a vector. To do so, we construct 

following histograms to form a dynamic curvature descriptor:  

 

(1) Regional Histogram of Intra-frame: Given k facial frames and n regions for each 

individual frame, the histogram of shape-index of each region i of individual frame j is 

derived to form a histogram vector, j

ih , where i=1,…n; j=1,...k;   
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ℎ𝑖
𝑗

= [
𝑐1

𝑐
,
𝑐2

𝑐
, … ,

𝑐9

𝑐
] (7))) 

where c is the total number vertices of a local region i in a single frame j, and 
1c , … 9c  

are the numbers of vertices with shape-index scale 1,…9 in that region, respectively.    

 

(2) Regional Histogram of Inter-frame: In each region i, the statistics of shape-index is 

counted in all k frames as a whole to form a second histogram vector, k

ih , where i=1,…n; 

j=1,...k.   

ℎ̅𝑖
𝑘 = [

𝑐1

𝑐
,
𝑐2

𝑐
, … ,

𝑐9

𝑐
] (8))) 

where C is the total number vertices of a local region i across all k frames, and 
1C , … 9C  

are the numbers of vertices with shape-index scale 1,…9 in that region of all k frames, 

respectively.    

 

(3) Local Temporal Histogram: For each sub-region i, we concatenate the histogram j

ih  

across k frames along the temporal axis and the histogram k

ih to formulate a local 

temporal histogram vector,  

𝐻𝑖
𝑘 = [ℎ𝑖

1, ℎ𝑖
2, … , ℎ𝑖

𝑘 , ℎ̅𝑖
𝑘] (9))) 

(4) Global Temporal Histogram - Dynamic Curvature Descriptor: For the facial model 

across k frames, we combine all the local temporal histograms of n regions to generate a 

global descriptor (so-called dynamic curvature descriptor), which will be used for 

subsequent classification,   

𝐻𝐷
𝑘 = [𝐻1

𝑘, 𝐻2
𝑘, … , 𝐻𝑛

𝑘] (10))) 
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where n is the number of local regions and k is the number of frames (n=8 and k=3 in 

this implementation).  

 

 

 

 

 

3.3  Classification 

After the dynamic curvature descriptor is created for 3D video sequences, we apply LDA 

for dimension reduction, and then use Support Vector Machine (SVM) classifiers to learn 

predictive power. Traditional SVM is used for binary classification. How to effectively 

extend it for multi-class classification problem is still an on-going research issue. One 

efficient way is to construct a multi-class classifier by combining several binary 

classifiers. The one-against-all SVM is constructed for each class by discriminating that 

class against the remaining M-1 classes. The number of SVMs used in this approach is M. 

A test pattern x is classified by using the winner-takes-all decision strategy, i.e., the class 

with the maximum value of the discriminant function f(x) is the class that x belongs to.  

 

Alternatively, the one-against-one SVM method is also known as one-versus-one method. 

An SVM is constructed for every pair of classes by training it to discriminate the two 

classes. Thus, the number of SVMs used in this approach is M(M -1)/2. A max-min 

strategy is used to determine the class that a test sample belongs to. That is to say, the 

class with the maximum number of votes for the test sample is assigned to the sample.  

Figure 22. Illustration of Dynamic Curvature descriptor based on eight local regions. 
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There are other existing multiclass SVM algorithms, e.g., directed acyclic graph SVM 

(DAGSVM) [62][63], Weston's multi-class SVM [64], and Crammer's multi-class SVM 

[65]. However, considering the algorithm complexity and classification performance, we 

chose the one-against-all SVM for the classification task. 

 

4. Experiments and Evaluation 

4.1  Database 

A public database 4DFE [13] is used for our test. This is a 3D dynamic face model 

database, which contains 3D video sequences of six prototypic expressions of subjects. 

Each clip has neutral expressions and posed non-neutral expressions. 

 

4.2  Facial Activity Classification 

Inspired by the 2D dynamic texture based approach which is capable of distinguishing 

different expressions, we extend the concept to dynamic curvature based approach for 

handling 3D dynamic range model videos. One of the advantages is that the curvature 

based descriptor encodes the local surface shape information explicitly, thus being 

relatively robust with noise and pose changes. To verify such a new descriptor, we 

performed experiments on facial activity on three levels. First, we distinguish the facial 

activity by expressive face (with non-neutral expressions) and non-expressive face (with 

neutral appearances). Second, given the expressive face category, we apply the SVM 

(one-against-all) to classify the six prototypic expressions. Third, we further identify the 

intensity of each prototypic expression:  either low intensity or high intensity. 
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We used 60 subjects from 4DFE for our experiment. The experiment is subject-

independent. We randomly choose 50 subjects for training and 10 subjects for testing. 

Based on the tenfold cross-validation approach, by which the tests are executed 10 times 

with different partitions to achieve a stable generalization recognition rate. The classifier 

used for all three-level experiments is the two-class SVM. Followings are the results for 

three-level facial activity classification. 

 

First Level: Neutral vs. Non-Neutral.  

The confusion matrix is listed as below in Table 4. The average recognition rate to 

separate neutral with non-neutral expression is as high as 94.7%. 

Table 4. Recognition rate for neutral/non-neutral expression. 

True\Estimate Neutral Non-Neutral 

Neutral 95.1% 4.9% 

Non-Neutral 5.7% 94.3% 

 

Second Level: Six prototypic expressions 

From the non-neutral group of video segments, we further classify six prototypic 

expressions: anger, disgust, sadness, happiness, fear, and surprise. The confusion matrix 

of distinguishing six universal expressions is listed in Table 5. The average recognition 

rate is 84.8% 

Table 5. Recognition rate for six universal expressions(%). 

True\Estimate Anger Disgust Fear Happy Sad Surprise 

Anger 83.6 5.5 4.9 0 3.8 2.2 

Disgust 5.1 83.2 5.8 0 3.3 2.6 

Fear 1.7 3.2 81.3 7.5 4.2 2.1 

Happy 1.1 2.1 0 92.1 0 4.7 

Sad 4.2 8.6 9.2 0 78 0 

Surprise 1.1 1.9 3.6 3.9 0 89.5 

Third Level: Low Intensity vs. High Intensity  
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For each recognized expression, their corresponding 3D video segments are further 

classified by the binary SVM for separating their degree of the expression: low intensity 

or high intensity. Below are the summary of the average rate (Table 6) and the individual 

confusion matrix (Table 7). 

Table 6. Average separation rate of low/high intensities. 

Angry 

 

Disgust Fear Happy Sad Surprise 

80.6% 83.4% 79.1% 91.2% 78.4% 90.7% 

 

Table 7. Confusion matrix of individual expressions for intensity(low/high) 

separation. 

Expression True\Estimate Low  High 

Angry  Low 81.8% 18.2% 

High 20.6% 79.4% 

Disgust  Low 81% 19% 

High 14.2% 85.8% 

Fear  Low 80.1% 19.9% 

High 21.9% 78.1% 

Happy  Low 86.1% 13.9% 

High 3.7% 96.3% 

Sad  Low 79.4% 20.6% 

High 23.6% 77.4% 

Surprise  Low 85.5% 14.5% 

High 4.1% 95.9% 

 

4.3  Comparison 

We also conducted experiments with both our dynamic curvature based approach and 

other methods for recognizing expressions with both high and low intensities, 

respectively. We choose the recent and classic work for comparison, including 3D 

dynamic HMM [59][68], 3D dynamic Motion Units [68], 3D static surface primitive 

feature distribution [51], 2D dynamic motion units [67], 2D dynamic texture [77], and 2D 

static Gabor Wavelet [66].  As shown in the Table 8, the dynamic curvature based 
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approach outperforms other approaches in both cases of low intensity and high intensity 

of expressions. Its performance is close to the 3D dynamic HMM based approach where 

spatial-temporal features were described in the HMM framework. 

 

Table 8. Recognition rate from low intensity (LI) expressions and 

high intensity(HI) expressions using different approaches respectively. 

Methods  Low (LI) High (HI) 

3D dynamic curvature (our 

approach) 

75.1% 86.3% 

3D dynamic (HMM) [59][68] 72.4% 83.7% 

3D dynamic (MU based [68] 57.3% 72.1% 

3D static (PSFD) [51] 52.8% 71.7% 

2D dynamic (MU based) [67]  56.6% 69.2% 

2D dynamic (DT based) [77] 70.8% 81.5% 

2D static (Gabor) [66] 50.4% 68.6% 

 

5. Discussion 

This chapter presented a new 3D feature representation using a so-called dynamic 

curvature based approach for facial activity analysis. The experiments have shown the 

feasibility of such a new descriptor for 3D facial activity analysis. We have evaluated its 

utility for dynamic curvature based expression classification in terms of neutral vs. non-

neutral, various prototypic expressions, and their high/low intensities. This type of 

method lends itself well to a parallel architecture. The descriptors for each of the regions 

can be constructed in parallel allowing for a real-time scenario for facial activity analysis. 
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Chapter 6 

3D/4D Feature Detection Using  

Action-based Statistical Shape Models 

1. Introduction 

Landmark localization on 3D range data is the first step toward geometric based vision 

research for object modeling, recognition, visualization, and scene understanding. 

Applications in this area of research include 3D face recognition and expression 

interpretation for biometrics and human computer interaction [88] and face segmentation 

[89]. With the rapid and affordable [86] development of 3D imaging technologies, 3D 

range data is becoming one of the most popular modalities for applications in computer 

vision. While research in 2D modality based tracking has produced a number of 

successful and widely used algorithms, such as Active Shape Model [57] and Local 

Binary Pattern [52], research in 3D modality based analysis still faces the challenges of 

3D geometric landmark localization, 3D mesh registration, and 3D motion tracking. 

Therefore, there is a strong demand for novel and robust algorithms for handling 3D 

datasets. Morphable Model [58] is a successful algorithm for these 3D problems. Another 

commonly used method for registering two meshes is the Iterative Closest Point 

algorithm (ICP) [53]. This method relies on finding the closest pairs of points between 

the two meshes being registered; however, it shows limitations in handling largely 

deformed mesh models. X. Lu et al. [59] developed an approach using ICP to detect the 

nose tip and mouth corner landmarks to help register the meshes for classification. Wang 
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et al. [47] used key facial landmarks selected semi-automatically to segment the face and 

perform facial expression analysis by evaluating the principal curvatures in those 

segmented regions. 

 

Active shape models (ASM) have been widely used to address the problem of landmark 

detection and tracking, although mainly on 2D data [57][90] or volumetric data [91] for 

medical data segmentation. The construction and tracking of a 2D-based ASM relies on 

both 2D shape components and 2D texture components due to the lack of explicit 3D 

shape representation of texture data. The fitting process relies on a regression procedure 

guided by shape constraints and texture primitive constraints (e.g. edge, intensity, and 

color, etc.) The quality of the results, however, is limited by the accuracy of these 

constraints and the degree of pose variance.  

 

Recent work has addressed the problem of fitting a deformable model to 3D range data. 

Fanelli et al. [92] used a random forests-based active appearance model for face 

alignment. While they have achieved good results with the tested data, their method 

currently does not handle noisy data from cameras such as the Microsoft Kinect [86]. Sun 

et al. [48] used active appearance models (AAM) to track features of 3D range models. 

However, the detection and tracking of facial features were performed on 2D videos, 

while the 3D features themselves were obtained by mapping the 2D features to the 

corresponding parts of the 3D models. Nair et al. [55] developed an approach to fit an 

active shape model to 3D face meshes using candidate landmarks for the inner eye 

corners and nose tip. Their active shape model is fit by finding a similarity transformation 
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between the candidate landmarks of the mesh and the corresponding landmarks within 

their active shape model. Perakis et al. [56][149] obtained candidate landmarks through 

shape index calculation, and compared them to their 3D active shape model. However, 

there is no single fitting or temporal fitting process for finding candidate landmarks. Zhao 

et al. [93] used a patch based method to probabilistically fit a statistical facial feature 

model to 3D range data. However, their method has a noise removal preprocessing step 

where spikes are detected and removed and holes are filled. Guan et. al [94] used a Bezier 

surface for landmark localization on 3D data. Weise et. al [95] used a statistical model to 

track a face and animate a virtual avatar. In all of the above approaches, the method was 

restricted to only face models, no temporal information was utilized, or only non-noisy 

data was tested on. 

 

In this chapter, we extend our previous work [96] by proposing a method to construct 

action-based statistical shape models (ASSM) for landmark localization on both 3D and 

4D (3D + time) range data. An ASSM can be constructed from either 3D or 4D point 

distribution models, without the use of textures. Our action-based models are built from 

different actions, and are not limited to only face models. These actions can be, but are 

not limited to, expressions of a face (e.g. fear, anger, happiness, sadness, surprise, and 

disgust), movement of an arm (e.g. bent or straight), or rotations. The basic method for 

model fitting relies on finding the closest points in the range mesh model that correspond 

to an instance of the ASSM, where an instance is defined as a sampling along the modes 

of variation in the ASSM. The variance of the ASSM weighted matrix determines 

whether a set of landmarks is considered an acceptable candidate for a good fit. For each 
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adaptation from the ASSM to the range mesh surface, we compute a distance score 

between the newly detected landmarks and the original instance of the ASSM. The lowest 

score is considered the best fit to the range mesh model.  

 

Our primary contribution is the use of action-based statistical shape models for landmark 

localization on both static and dynamic (temporal) range data that can be noisy and/or 

have incomplete or missing data. Using the ASSM method we are able to fit various input 

modalities for range data such as faces, arms, hands, and toy models. Our ASSM method 

not only makes use of the local constraints imposed by statistical models, but also the 

inter-frame constraints imposed when modeling 4D data. This is due to the nature of each 

different type of action. For example a face expression can be assumed to behave in the 

following way: neutral, to onset, to peak, to offset, and back to neutral again. For rotation 

data, the sequence would have the following behavior: frontal view, partial profile view, 

full profile view. We have found that a small amount of modeled actions can be used for 

landmark localization on a variety of sequences (e.g. rotation from frontal to full profile). 

We apply the detected landmarks to both subject identification and expression 

classification on multiple public databases. We also evaluate the accuracy of the 

landmark detection through applications of 3D video segmentation, gesture recognition, 

and pose estimation. 

 

2. 3D Action-Based Statistical Shape Model 

3D range data exhibits shapes of surfaces explicitly. This shape representation provides a 

direct match with our action-based statistical shape model due to its inherent and explicit 
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shape representation in 3D space. In considering this property, our landmark localization 

algorithm can rely solely on 3D geometric shape without assistance of any texture 

information, thus resulting in less sensitivity to pose and lighting variations. 

 

To take advantage of this property, we would like to model the shape variation, as well as 

the implicit shape (“action”) constraints imposed between consecutive frames in a 

sequence of models. Given a training set of M mesh models each with N annotated 

landmarks, the data is separated into L groups consisting of the actions to be modeled 

(e.g. for a facial expression L=3 for neutral, onset, and peak). To construct an action-

based temporal point distribution model, a parameterized model, S, is constructed 

where 𝑆 = 𝑃1
1, … , 𝑃𝑁,

1  𝑃1
2, … , 𝑃𝑁

2, … , 𝑃𝑁
𝑘.  𝑃𝑖

𝑘  is the i
th 

landmark of the k
th

 model, where 

𝑃𝑖
𝑘 = (𝑥𝑖

𝑘, 𝑦𝑖
𝑘, 𝑧𝑖

𝑘) and 1 ≤ k ≤ M (M is the total number of training models). To construct 

this model, the training landmarks must be aligned. To do so a modified version of 

Procrustes analysis is used [57]. 

 

Procrustes analysis determines a linear transformation that aligns two sets of points 

(shapes). It minimizes the distance between the sets of points, which is a minimized 

summation of the squared errors. Once alignment has been performed, principal 

component analysis (PCA) is then performed on the aligned feature vector. This 

estimates the different variations of all the training data in the k×N×3 dimensional space. 

For PCA, each shape deviation from the mean is calculated as 

  dsi = si − s̅ (11)1) 
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Where 𝑠𝑖 is the current shape and �̅� is the average shape. The covariance matrix C is then 

calculated: 

C =
1

M
∑ dsidsi

T
M

i=1
 (12))) 

This equation yields the modes of variation, V, of the training shapes along the principal 

axes. Given V and a weight vector, w, that controls the shape, we can approximate any 

shape from the training data by: 

S = s̅ + Vw (13))) 

The weight vector, w, allows us to generate new samples by varying its parameters within 

certain limits. These limits are imposed to ensure only valid shapes are constructed (i.e. a 

correct facial expression). In the literature, most statistical shape models constrain the 

allowable shapes to be within 3 standard deviations from the mean, however, for our 

ASSM method we have empirically found that we can constrain the allowable shape 

domain to be within 2 standard deviations from the mean, giving us: 

−2√λi ≤ wi ≤ 2√λi (14))) 

where 𝜆𝑖 is the i
th

 eigenvalue of C. Constraining the allowable shapes domain to be 

within 2 standard deviations from the mean allows our ASSM method to have a smaller 

search space for each modeled action, which is detailed in section 3. 

 

When approximating a new shape S, the action-based temporal point distribution model 

is constrained not only by the variations in shape but also by the inter-frame constraints 

that consecutive temporal frames impose. Given a k-frame ASSM, k consecutive input 

mesh models are ensured to vary in a manner that is consistent with the ASSM. For 
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example, we can assume that during the course of an expression, facial appearance is 

developed gradually. If we have a frame displaying a neutral expression at the start of the 

sequence, the next frame cannot display the peak of the expression, as there needs to be 

some form of the onset of the expression before the peak occurs. The feature vector will 

not allow the shape to have a neutral expression next to the peak. Therefore, during the 

adaptation of the ASSM, if we come across k mesh models that do not vary in a way that 

is consistent with our ASSM, we can attribute this to an unknown anomaly and label the 

k mesh models as such. Fig. 23 shows an example of a k-frame ASSM, modeling a 

surprise face expression, where N=83. 

 

 
Fig. 23. Example k-frame ASSM where N=83. Top row shows fit mesh models, 

bottom row shows visual representation of ASSM face expression vector. 

 

 

3. Fitting 3D and 4D Range Data 

3.1  Fitting 3D Range Data Using an ASSM 

When dealing with static 3D range data we construct an ASSM where k = 1, allowing us 

to fit a single frame in the absence of a sequence of frames. To fit the ASSM to 3D range 

data, the optimal weight parameters are learned off-line by uniformly perturbing each 
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instance of the ASSM within the allowable shape domain of 2 standard deviations from 

the mean. This optimal weight vector, w, will control the allowable shapes of the ASSM. 

This off-line learning allows us to speed up the fitting process, as well as have more 

control over which shapes are constructed and to help ensure the new shapes are 

consistent within the allowable shape domain.  

 

Once we have our optimal weight vector, the instances of the ASSM are then fit, without 

any initialization or a priori knowledge of the action class (rotation, expression, etc.), to 

the 3D input data. This is done by finding which vertex in the range mesh model 

corresponds to the closest point of each landmark in the ASSM instance. We are able to 

do a simple closest point search as the final Procrustes distance will be large if desirable 

points have not been found. When searching the input range model for the closest points, 

each model is constructed as a k-d tree, which helps to significantly speed up 

computation time from that of a brute force search. After we find the N closest points in 

the model, we then determine if the newly detected landmarks for the ASSM instance 

correspond to an allowable shape based on the constraint that the weight vector, w, must 

fall within 2 standard deviations from the mean. To do this, we must transform our 

detected landmarks into the model parameter space by constructing a new w vector. Since 

equation (13) gives us 𝑆 = �̅� + 𝑉𝑤, we can then find the corresponding w vector of the 

detected landmarks by the following: 

𝑤 = 𝑉𝑇(𝑆 − �̅�) (15))) 

We then compare this new w vector to the allowable domain. If it is within this range, it 

is accepted as a candidate best fit for the 3D range data, otherwise it is discarded for the 
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range model we are trying to fit. For the candidates that are accepted, the ASSM instance 

that yielded these candidate landmarks, as well as the candidate landmarks themselves, 

are saved. Each candidate model then has a distance score computed between the newly 

detected landmarks and the ASSM instance. This distance score is the Procrustes 

distance, a metric used to determine the shape difference between two objects. Given the 

original instance of our ASSM 𝑚1 = (𝑥, 𝑦, 𝑧) and the detected landmarks on the range 

data 𝑚2 = (𝑢, 𝑣, 𝑤), the Procrustes distance can be defined as: 

𝐷 = ∑ √(𝑢𝑖 − 𝑥𝑖)2 + (𝑣𝑖 − 𝑦𝑖)2 + (𝑤𝑖 − 𝑧𝑖)2

𝑁

𝑖=1

. (16))) 

We find the Procrustes distance for each ASSM and its corresponding candidate 

landmarks on the range data for all candidate models. The smallest D value is considered 

the best fit. The smallest D is quickly found due to our offline vector w, as the 

computation is linear in terms of the number of landmarks as (16) shows. It is important 

to note that we have tested our approach on more than 80,000 3D/4D range models on 

four publicly available face databases, as well as in-house data collected from the 

Microsoft Kinect [19], and our range scanner. Through this testing we have empirically 

found our Procrustes distance-based approach to consistently show small distances when 

a good fit is found. Table 9 summarizes our ASSM algorithm below. 
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Table 9. ASSM Fitting Algorithm. 

ASSM LANDMARK LOCALIZATION 

Input: k 3D mesh models 

1. Learn optimal weight parameters, off-line, to  

construct allowable instances of ASSM. 

2. Construct k k-d trees from input mesh models, to speed up  

computation time. 

3. Search k k-d trees for closest landmarks to each ASSM instance. 

4. Transform detected landmarks from step 3 into the  

model parameter space. 

5. Determine acceptable candidate fits from model parameter space. 

6. Find smallest distance, D, for each ASSM and the  

candidate fits determined in step 5. 

7. Select detected landmarks that give smallest D as best fit. 

Output: Localized landmarks on k 3D mesh models. 

 

Fig. 24 shows sample frames from the fitting process, where the smallest D value is 

selected as the best fit. Fig. 25 shows examples from the BU-3DFE database [31]. 

Included in this figure are the best and worst fits of the detected landmarks with 

comparison to the manually selected ground truth. For this example, the distance measure 

is very high for the worst fit, detailing a worst case scenario for the ASSM fitting process. 
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Figure 24. Sample frames from fitting process (k=1). Higher D values show poor 

fits, lowest D selected as best fit (in blue). 

 

 
Figure 25. Top row: best fit, Middle row: worst fit, bottom row: ground truth. 

 

 

Fig. 26 shows landmark detection on models that were manually rotated to display roll, 

pitch, and yaw, illustrating robustness to pose variation. Fig. 5 shows example 3D mesh 

models captured from the Microsoft Kinect [86], including non-face objects, and partially 

occluded faces.  As seen in Fig. 27, due to the low resolution of the Kinect scanner, there 

is missing data in the models including breaks in the fingers from the hand. Our ASSM 

algorithm can still detect the landmarks on this type of data, without the need for any pre-
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processing. Fig. 6 shows sample frames captured from our in-house range scanner where 

the subject’s face is partially occluded.   

 

 
Figure 26. ASSM fit on models displaying roll, yaw, and pitch. 

 

 

It can be seen in Fig. 27 and Fig. 28 that our ASSM method can accurately detect 

landmarks on face and non-face data, as well as display robustness to occlusion and 

incomplete data. In addition we also tested on the Eurecom Kinect Face Dataset [24], 

showing robustness to occlusion, noisy and missing data, as can be seen in Fig. 29. 

  

 
Figure 27. Microsoft Kinect [86] showing face data with partial occlusions and 

incomplete non-face data. 
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Figure 28. Frames from our in-house range scanner showing occlusion of subject’s 

face. NOTE: the first frame shows texture for display purposes only, showing 

robustness to eye-glasses and facial hair. 

 

 
Figure 29. Sample frames fit with ASSM algorithm from the Eurecom Kinect Face 

Dataset [87], showing robustness to occlusion, noisy, and missing data. 

 

 

 



75 

 

3.2 Fitting 3D Range Data Using an ASSM 

Given an input sequence of M frames, we can detect landmarks using an ASSM where k 

> 1, so-called multi-frame ASSM, by imposing inter-frame constraints on the fitting 

process. Similar to the algorithm in Table 1, we extend the w vector to the length  𝑘 × 𝑁, 

where k is the number of mesh models and N is the number of landmarks. Again, the 

reach of the k mesh models to be fit is represented as a k-d tree. The search is once again 

for the closest points on each of the mesh models. However, instead of searching for all 

𝑘 × 𝑁 landmarks in the ASSM for k mesh models, the ASSM is still searched using N 

landmarks for each individual model. Then, the k-frame ASSM is applied using the same 

criteria as in Algorithm 1 in Table 1. Since an action appears over certain durations, we 

can define a k-frame ASSM based on the samples of these durations. To give examples of 

how this method works, we will detail both expressions and rotations, however, it should 

be noted that this method extends to other actions, as well as, extended durations. While 

performing an expression, the following five durations would be displayed: neutral, 

onset, peak, offset, and neutral. Performing a rotation would display the following three 

durations: frontal, partial rotation, and full rotation. For our implementation when 

modeling rotations, we have defined frontal as 0-20 degrees, partial rotation as 20-50 

degrees, and full rotation as 50-90 degrees. This can be done for both positive and 

negative rotations of roll, pitch, and yaw. 

 

In our implementation we define a multi-frame ASSM with k = 2. Given an expression 

with durations from neutral, to onset, to peak, to offset, and back to neutral, we construct 

8 ASSM for each expression, combining two frames in different durations. The 8 ASSM 
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where 𝑆𝑖 = {𝑆1, … , 𝑆8} are neutral to neutral, neutral to onset, onset to onset, onset to 

peak, peak to peak, peak to offset, offset to offset, and offset to neutral. Note that such an 

inter-frame relationship (or temporal constraint) makes the landmark detection across 

multiple frames occur simultaneously and accurately. Given a sample rotation from 

frontal to full profile, with durations from frontal, to partial, to full, back to partial, and 

finishing again at frontal, we construct 7 ASSM for the rotation sequence. These 7 ASSM 

where 𝑆𝑖 = {𝑆1, … , 𝑆7} are frontal to frontal, frontal to partial, partial to partial, partial to 

full, full to full, full to partial, and partial to frontal. This can again be applied to both 

positive and negative rotations for roll, pitch, and yaw. Such a relationship is applicable 

to any action with any speed since the multi-frame ASSM can handle variable speed 

actions. The temporal constraint can filter out some impossible cases (e.g. neutral-peak, 

frontal-full, etc.) thus resulting in a consistent fitting. Any violation of the inter-frame 

relationship will cause a large fitting error. 

 

Using the 8 ASSM for the expressions, we fit each one to frames in multiple expression 

sequences to find the best fit. A sample surprise expression sequence from the BU-4DFE 

database [13] can be seen in Fig. 30. Shown in Fig. 31 are sample frames from the BU-

4DFE [13] and BP4D-Spontaneous [85] in the second and bottom rows respectively. Fig. 

31 also shows the examples of FRGC 2.0 [84] (top row), and BU-3DFE database [31] 

(third row). 
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Figure 30. 4D Sequence fit with ASSM method. 

 

Fig. 4 shows how our ASSM method can successfully detect landmarks on 3D rotated 

models, however, the data in this figure has been manually rotated for each roll, pitch, 

and yaw pose. While this shows robustness to pose variations, this is not an accurate 

representation of how rotations would occur in a real-world scenario. Given rotations of 

roll, pitch, and yaw, the models could exhibit large deformations in the mesh, including 

self-occlusions (i.e. completely missing data). Using the 7 ASSM for rotations, we are 

also able to model these deformations in the mesh. Example frames displaying roll, pitch, 

and yaw can be seen in Fig. 32, as well as Fig. 41. 
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Figure 31. By row: FRGC 2.0, BU-4DFE, BU-3DFE, and BP4D-Spontaneous. 

 

 
Figure 32. Sample frames from our in-house scanner showing yaw, roll, and pitch 

pose variations. Note: The last column in each row is the same model from the 

previous column. The view has been changed to show the mesh deformations that this 

degree of pose shows. 

 

As shown in Fig. 5, our method can also model non-face objects.  Fig. 33 shows another 

example of fitting an ASSM to non-face data, as well as the ASSM being able to fit mesh 

models with no real discernible features (e.g. the label on the front of the penguin is not 

featured on the mesh model). 



79 

 

 
Figure 33. Sample frames from our in-house scanner showing non-face data in the 

form of a rotated toy penguin. Note: the texture is shown for display purposes only, to 

give a better visual representation of which features are selected. 

 

4. Experiments and Evaluation 

4.1  Databases 

Four public face databases have been used for our study including two static and two 

dynamic databases. BU-3DFE [31] consists of 100 subjects each displaying one neutral 

expression and four intensity levels of six expressions. FRGC 2.0 [84] consists of 466 

subjects displaying two different expressions. BU-4DFE [13] consists of 101 subjects 

with sequences of six different expressions. BP4D-Spontaneous database [85] consists of 

41 subjects (56% female and 44% male), each consisting of 10 different spontaneous 

expression sequences. The expressions are elicited activities including film watching, 

interviews, and experiencing cold pressor test among others. Ten different spontaneous 

expressions are evoked (joy, embarrassment, surprise, disgust, anxiety, fear, sadness, 

pain, anguish, sympathy). Each task could have multiple spontaneous expressions or 

mixed emotions due to the nature of the experimental setup. The database includes the 

3D dynamic model sequences, texture videos, and annotated action units (AU). Fig. 31 
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(bottom row) shows an example of the database (details are described in [85]). Table 10 

lists more details pertaining to each database. 

 

Table 10. Summary of databases. 

DATABASE SUMMARIES 

Database Modality Type 
Number of 

Subjects 

Number of 

Expressions 
#Models 

3DFE Static Deliberate 100 7 2500 

4DFE Dynamic Deliberate 101 6 
606 

Sequences 

FRGC 2.0 Static Deliberate 466 2 932 

BP4D-

Spontaneous 
Dynamic Spon. 40 10 

240 

Sequences 

 

 

4.2  Database Error Rates 

To construct our ASSMs, approximately 5-10% of the data was used for training and the 

rest was used for testing. To evaluate the accuracy of the ASSM fitting algorithm, we 

calculate the error between the fit landmarks and manually selected ground truth. To do 

so, we calculate the mean square error (MSE) between the two sets of landmarks. We 

define the one-point spacing as the closest pair of points on the 3D scans (0.5 mm on the 

geometric surface). If we treat the unit error being equivalent to 1 point-spacing, the 

mean error can be computed by the average of point differences between the two sets. 

The average errors on the four databases are listed in Table 11. As can be seen from 

Table 3, the algorithm can be used for multiple databases. The databases tested each had 

different quality and resolution of data, however, the average fitting errors are each 

within a consistently small range, showing our proposed algorithm has robustness to 

different data. 
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Table 11. Average Error in point spacings for different databases and resolution in 

number of vertices per model. 

AVERGAE ERROR IN POINT SPACINGS 

Database  
BU 

3DFE 

BU 

4DFE 
FRGC 2.0 

BP4D 

Spontaneous 

Average Error 5.6 1.5 6.7 1.6 

Approximate Resolution s  

(# of Vertices) 
20000 30000 100000 50000 

 

Fig. 34(a) shows the error statistics (average error and standard deviation for each of 83 

key points) of the BU-3DFE database. Fig. 34(b) shows the error statistics for the BU-

4DFE database. Fig. 34(b) shows lower error rates over each of the 83 detected 

landmarks compared to that of Fig. 34(a). 

 
Figure 34(a). BU-3DFE detected landmarks (83) compared to ground truth. 
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Figure 34(b). BU-4DFE detected landmarks (83) compared to ground truth. 

 

We have also compared our result of mean square error of the average point spacings to 

the work reported by Sun et al [48]. Our MSE for BU-4DFE is 3.7, which shows a 

significant improvement over the result of 6.25 as reported in [48]. Fig. 35 shows the 

average errors on each of 83 points using our approach and the approach in [48]. 

 
Figure 35. Point space comparison with our ASSM method and Sun et al [13]. 

 

In addition to the ground truth comparisons and the MSE comparison to Sun et al [48] we 

have also compared our results to the work reported by Nair et al [55] on the BU-3DFE 

database. Following their method, we selected four landmarks, the inner and outer 
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corners of the left and right eye, to compare to the ground truth. We achieved an 

approximate error rate of 0.09 as compared to their approximate error rate of 0.44. Fig. 

36(a) shows our mean normalized error, and Fig. 36(b) shows the mean normalized error 

of [55]. The mean normalized error is the average error between the ground truth and the 

localized landmarks normalized to [0, 1]. The evaluation shows that our feature tracking 

approach outperforms [55] as our approach does not rely on candidate landmarks to guide 

the fitting. The evaluation also shows that our ASSM approach is robust to various 

expressions and has a consistent error rate across all selected features. This can be seen in 

the minor differences in error rate across each expression on all four of the selected 

features. 

 
Figure 36. (a) Mean normalized error of our ASSM method. (Key: AN=angry, 

DI=disgust, FE=fear, HA=happy, NE=neutral, SA=sad, SU=surprise). 

 

 
Figure 36. (b) Mean Normalized error of Nair et. al. [55](Key same as Fig. 13(a)). 
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We also compared tracking results from our BP4D-Spontaneous database to those 

obtained by using the Kinect face tracking API [5] on the same set of 3D range models. 

In order to do this comparison we need to modify the Kinect face tracking algorithm to 

work with our 3D range data instead of the depth and RGB data acquired from the 

Kinect. Here is a brief description of the modified Kinect face tracking (MKFT) 

algorithm. First we need to do multi-rendering in order to render our 3D range data in a 

suitable depth and RGB format to be used for the tracking. Next a position map is used to 

convert the 2D coordinates in the rendering space to the model space to acquire the 3D 

landmarks. Due to fitting error in the rendering space, there are some face contour errors 

that need to be adjusted by using an error minimization algorithm.  Once these steps are 

done we are able to compare the same 83 face landmarks using the MKFT algorithm and 

our ASSM algorithm. Fig. 37 shows the 1 point spacing between our ASSM algorithm 

and the landmarks from MKFT algorithm. 

 
Figure 37. Point space comparison on 83 landmarks between our ASSM algorithm 

and the MKFT algorithm. 
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4.3  Subject and Expression Verification 

To validate our proposed method, we apply it to subject verification and facial expression 

classification problems. We take the component based approach for the classification. 

Given the tracked feature points, we can easily segment the facial model into several 

component regions, such as the eyes, nose and mouth. Fig. 38(a) shows an example of the 

resulting segmentation. 

 

 
Figure 38. (a) Sample of component regions; (b) component-based HMM based on 

six component regions. 

 

4.3.1 3D Component Feature Representation 

3D facial models can be characterized by their surface primitive features. This spatial 

feature can be classified by eight types: convex peak, convex cylinder, convex saddle, 

minimal surface, concave saddle, concave cylinder, concave pit, and planar. Such a local 

shape descriptor provides a robust facial surface representation To label the model 

surface, we select the vertices of the component regions and then classify them into one 

of the primitive labels. The classification of surface vertices is based on the surface 



86 

 

curvature computation [48]. After calculating the curvature values of each vertex, we use 

the categorization method [45] to label each vertex on the model. As a result, each range 

model is represented by a group of labels that construct a feature vector: G = (g1, g2,..., 

gn), where gi represents one of the primitive shape labels, and n equals the number of 

vertices in the component region. 

 

Due to the high dimensionality of the feature vector G, where each of six component-

regions contains between 300 and 700 vertices, we use a Linear Discriminant Analysis 

(LDA) based method to reduce the feature space of each region. The LDA transformation 

maps the feature space into an optimal space where different subjects are easily 

differentiated. It then transforms the n-dimensional feature G to the d-dimensional 

optimized feature OG (d<n).  

 

4.3.2 Spatial HMM Model Classification 

As shown in Figure 14(b), each frame of the 3D facial model is subdivided into six 

components (sub-regions) C1, C2, C3, C4, C5, and C6, including regions of the eyes, 

nose, nose bridge, mouth, and the remaining face.   From C1 to C6, we construct a 1-D 

HMM [97] which consists of the six states (N = 6), corresponding to six regions. 

     

We transform the labeled surface to the optimized feature space using the aforementioned 

LDA transformation. Given such an observation of each sub-region, we can train the 

HMM for each subject. Given a query face model sequence of length k, we compute the 

likelihood score for each frame, and use the Bayesian decision rule to decide which 
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subject each frame is classified to. Since we obtain k results for k frames, we use a 

majority voting strategy to make a final decision. As such, the query model sequence is 

recognized as subject Y if Y is the majority result among k frames. This method tracks 

spatial dynamics of 3D facial surfaces, where the spatial components of a face give rise to 

the spatial HMM to infer the likelihood of each query model. Note that if k is equal to 1, 

the query model sequence becomes a single model for classification.   

 

4.3.3 Temporal HMM Model Classification 

For the 3D expression sequences, we treat 6 frames as the 6 states of the HMM model for 

expression classification. When observing the state change of a local region across a 

sequence, we are able to use the facial features of the local region to train a temporal 

HMM. Each local region of a facial surface learns an HMM for each distinct expression 

separately. Given six local regions and six prototypic facial expressions, a total of 36 T-

HMMs are established for an entire facial surface. 

 

Since the features extracted from the six local regions could generate six different 

classification results, we use the majority voting strategy to determine the expression type 

of the subsequence. If more than two regions are classified as a same expression, such 

expression is taken as the recognized expression for this subsequence. If there is no 

majority expression to be recognized among the six regions (R1, ..., R6), the expression 

with the maximum likelihood (probability) of the region will be chosen as the recognized 

expression of this subsequence. This procedure is formulated as the following equation: 
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𝑅𝑐 = argmax
𝑅𝑘

[
𝑃(𝜔𝑐∗

𝑘 |𝑂𝑅𝑘)

∑ 𝑃(𝜔𝑖|𝑂𝑅𝑘)𝐶
𝑖=1

]𝑘=1,2,…,6  (17))) 

 

where 𝜔𝑐∗
𝑘  is the expression type determined by the region Rk , 𝜔𝑖 is a trained HMM 

model, C is the number of  trained HMM models, and O is an observation sequence.  As 

a result, the expression of the region Rc with the maximum likelihood is selected as the 

recognized expression of the subsequence. In summary, the regional features of a facial 

surface are used to learn their temporal changes, and the classified expression is 

determined by either the majority voting or the maximum probability of observations of 

local regions. ASSM experimental results for both subject verification and expression 

classification follows. 

 

4.3.4 Subject Verification and Face Expression Classification 

The BU-4DFE database was used for both subject verification and face expression 

classification purposes. For each training sequence of 4DFE, 20 sets of three consecutive 

frames were randomly chosen for training.  Following the HMM training procedure (k = 

3), we generated an HMM for each subject. The recognition procedure is then applied to 

classify the identity of each input sketch sequence (k = 3) as the previous section 

described. Based on the 10-fold cross validation approach, the correct recognition rate is 

approximately 95%. For face expression classification, the six prototypic facial 

expressions are classified with an accuracy of approximately 93%. 
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4.4  Expression Segmentation (Action vs. Non-Action) 

A natural extension of our proposed method is the application of expression segmentation 

(or facial event detection) across a sequence of facial models. Each of the ASSM 

instances has been labeled with a subject, an expression, and the inter-frame constraint. 

Using this labeling we are able to compare each set of detected landmarks to the original 

instances of the ASSM, which is the same method as described in section 3. Given (16), 

we can find the distance D from the detected landmarks to each of the ASSM instances. 

The smallest D value must correspond to a minimum threshold for a correct 

classification.  

 

For the purposes of expression segmentation, we classify the results into one of two 

categories: either an action (onset/offset, and peak), or non-action (neutral expression). 

To analyze these results, we manually segmented sequences from the BU-4DFE [13]  and 

BP4D-Spontaneous [85] databases and compared the automatic segmentation with this 

ground truth data. We achieved approximately 86% and 81% correct classification rates 

in terms of action vs. non-action segmentation across all expressions for the BU-4DFE 

and BP4D-Spontaneous databases respectively. Note that the data is very challenging for 

all expressions in the BP4D-Spontaneous database. Fig. 39 illustrates an example from 

this database of segmentation on a sequence where the subject is smiling. 
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Figure 39. An example of spontaneous expression segmentation (action/non-action) 

on the 4D spontaneous expression database. Note: the texture shown in the top row is 

for illustration purposes only. 

 

 

4.5  Pose Estimation 

Using the ASSM method, we are able to accurately detect landmarks on sequences 

consisting of rotations displaying roll, pitch, and yaw as seen in Figs. 26 and 32. Using 

these detected landmarks, another natural extension is pose estimation. In order to 

perform pose estimation, we use a simple, yet effective method. To calculate the pose 

estimation, we use four of the feature points which are a subset of the N = 83 landmarks 

we detected on the face models used in this chapter. From these detected landmarks we 

calculate a normal vector that we then use for the pose estimation. The four landmarks 

used to calculate the normal vector are the left and right inner eye corners, as well as the 

left and right corners of the nose. Given these four landmarks, a triangle is formed by 

each eye’s inner corners and the average point of the two nose corners. The normal vector 

of such a triangle is relatively expression invariant, as can be seen in Fig. 40 thus 

representing the pose orientation of the head accordingly. We then use the relative 

rotation of the normal vector, compared to a model that is displaying a frontal view, to 

calculate the head pose angle. 
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Figure 40. Sample Illustrations, on BU-3DFE, BU-4DFE, and BP4D-Spontaneous, 

showing the landmarks used to create the normal vector used to determine head 

pose. Note: the landmarks on the nose tip regions have been translated along the z axis 

for illustration purposes only. This landmark, being the average of the nose corners, 

would normally not be visible from this view. 

 

To test the accuracy of this method, we selected one model per subject from the BU-

3DFE database [31] giving us a total of 100 different face models. We then manually 

rotated each model, as can be seen in Fig. 26, from a full frontal view to a full profile 

view (only yaw rotation was used for the pose estimation calculations). We saved the 

models every 10 degrees [0, 90], giving a total of 1000 rotated frames (including the 

frontal views). We used this data as the ground truth angle to compare our automatic 

method to. We then calculated the MSE of our estimated pose to the ground truth. Across 

all degrees [0, 90], our resulting MSE is 0.00041 degrees, with most degrees having an 

individual MSE of 0. We also compared our pose estimation results using 1700 models 

from the BP4D-Spontaneous database to the pose obtained from the modified Kinect [5] 

face tracking algorithm as detailed in section 4.2. The comparisons show 2.53, 1.35, and 
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2.44 differences in degree across pitch, roll, and yaw respectively. Fig. 41 shows models 

from our in-house scanner, displaying yaw and pitch, with estimated pose. 

 

 
Figure 41. Sample frames from our in-house scanner displaying pitch and yaw pose 

estimations. Top Row (Yaw): -37, -49, -51; Bottom Row (Pitch): -20, -23, -27. Note: 

The last column is the same model from the previous column. The view is changed to 

show the deformations that this degree of pose shows. 

 

4.6  Gesture Recognition 

Similar to the experiments detailed in sub-section C, where each ASSM has been labeled 

with a corresponding subject, expression, and constraint, each ASSM for the arm and 

hand models have been labeled with both an object and action type. As in the 

experimental setup of sub-section C, we again compare the detected landmarks to the 

ASSM instances. Given Equation (16), we can find the distance D from the detected 

landmarks to each of the ASSM instances. The smallest D value must again correspond 

to a minimum threshold for a correct classification.  Table 12 details the object and action 

types for both the hand and arm models. For 6 hand actions and 3 arm actions, we 

achieved 100% and 97% recognition for the type of model and action present 
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respectively. Fig. 42 shows sample hand and arm models along with the automatically 

labeled type and action. This method is also applicable to other object types, as well as 

extendible to more actions for each object type. 

 

Table 12. Object and action type for hand and arm ASSM. 

Object and Action Type for Hand and Arm ASSM 

Object 

Type 
Action One Action Two 

Action 

Three 

Action 

Four 

Action 

Five 
Action Six 

Hand 
1 

Finger 
2 Fingers 3 Fingers 4 Fingers 5 Fingers 

Closed 

Hand 

Arm Straight 
Partial 

Bend 

Full 

Bend 
N/A N/A N/A 

 

 

 
Figure 42. Sample frames from Microsoft Kinect [86], showing correct automatic 

labeling of object and action type for an arm and hand. 

 

5. Discussion 

In this chapter, we have presented a new 3D/4D action-based statistical shape model for 

detecting key landmarks on both 3D and 4D range mesh models. The ASSM method has 

been tested on 4 public face databases, as well as non-face data collected from our in-

house scanner. The method is able to accurately model large rotations, with deformations 

of the mesh, and range data of occluded faces. We have evaluated the accuracy of the 
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feature detection and validated its utility for subject verification and segmentation, pose 

estimation. While the algorithm itself is relatively fast, the off-line selection of landmarks 

for training data is a bottleneck. Assuming we have a large selection of data that has been 

trained, an ASSM lends itself well to parallel architecture. Each of the frames in the 

ASSM can be simultaneously fit to the input range data. This has the potential to allow 

real-time 3D detection and tracking of facial landmarks for high resolution range data. 
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Chapter 7 

3D/4D Feature Detection Using Shape Index-based  

Statistical Shape Models 

1.  Introduction 

Applications such as face recognition, expression analysis, human-computer interaction, 

and face video segmentation are increasingly being developed based on 3D, and 4D 

(3D+time) range data [137][138][139][142][47][144], given the rapid technological 

advancement of 3D imaging systems [74][141][86] [84]. Landmark localization on 

3D/4D range data is the first step toward geometric based vision research for object 

modeling, recognition, visualization, and scene understanding [89][140][100] [101][108].  

 

While 2D based tracking methods have been successfully developed, such as Active 

Shape Models [57], Active Appearance Models [131], using a consensus of exemplars 

[124], Constrained Local Models (CLM) [127], regularized landmark mean-shift [134], 

generative shape regularization model [128], explicit shape regression [125], supervised 

descent method for face alignment [135],  and shape-constrained linear predictors [98], 

there is a need for novel and robust algorithms to handle 3D/4D range data. Morphable 

Model [58] is one of the successful algorithms for handling 3D range data.  

 

There has been recent work to address the problem of detecting feature landmarks on 

range data. Zhao et al. [93] had success with detecting 3D landmarks using a statistical 
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facial feature model; however there is an upper bound on the number of landmarks. 

Fanelli et al. [92] used an active appearance model that is based on random forests; 

however this method used depth and intensity data rather than the 3D/4D range data. Sun 

et al. [48] used a so-called vertex flow approach, which used an active appearance model 

(AAM) to track features of 3D range models. However, the tracking of facial features 

was not truly in the 3D space, rather it was tracked in the 2D space and the 3D features 

themselves were obtained by mapping the 2D features to the corresponding parts of the 

3D models, tending to cause inaccurate projections.  Nair et al. [55] fit a 3D active shape 

model to facial data using candidate landmarks to deform the model, however the 

resulting error rate for fitting is relatively large, and problems occur when holes exist 

around the nose. Zhou et al. [104] created a 3D active shape model which was trained 

using a 3DMM, although the fitting for this method was done in 2D. Perakis et al. [133] 

used a 3D active shape model which was fit from previously determined candidate 

landmarks. A draw-back to this method is the need for preprocessing. Guan et al. [94] 

performed landmark localization on facial data by utilizing a Bezier surface. This method 

was tested on a small dataset consisting of 100 3D models. Jeni et al. [129] used a 3D 

constrained local model method (estimated from 2D shape) to track landmarks for action 

unit intensity estimation. Baltrusaitis [105] used a 3D CLM (a.k.a. CLM-Z) trained with 

depth data rather than 3D/4D range data for rigid and non-rigid feature tracking. A 

statistical model (blend-shape) was utilized by Weise et al. [95] to track facial data and 

animate a virtual avatar; however, this has the limitation that the blend-shape may not 

have a unique set of needed weights for an expression. Chen et al. [140][100] applied a 

coarse-to-fine approach via curvature and active normal model for landmarking. 
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Recently, we have developed a so-called 3D temporal deformable shape model (TDSM) 

for feature tracking through 3D range sequences [96]. However, such a multi-frame based 

shape model may not work well for different expressions within a very short duration 

when dramatic motions or sudden expression changes occur in the 3D videos, thus the 

performance on 3D geometric tracking still needs to be improved. Motivated by the 

previous work [96], we continue to address the issue of feature detection and tracking on 

3D/4D range data with a more reliable way.   

 

In this chapter, we propose to construct a shape index-based statistical shape model (SI-

SSM) with both global and local constraints. The SI-SSM is constructed from both the 

global shape of 3D feature landmarks and local features from patches around each 

landmark. In order to construct the patches we find 3D features from the (u, v) 

coordinates around each landmark. From these new features we construct a  𝑛 × 𝑛  patch, 

where each vertex is represented by a unique shape index value. Using both the global 

shape and the local features around each landmark enables us to reliably detect and track 

features on the range mesh data. The feature detection and tracking are based on finding 

the correlation between the local shape index patches on the input range data and the 

trained SI-SSM model (as illustrated in Figure 3). 

 

The main contribution of this chapter is the construction of a statistical model that makes 

use of both the global shape of 3D face surface, as well as the local shape around 

individual features by way of shape index representation. This model can be used to 

detect and track features on range data. By using the shape index representation we are 
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able to make the local fitting invariant to both lighting and pose changes. We are able to 

model and fit data that includes various emotions, rotations, occlusions, and missing data 

by training on each of these data types. Following is the summary of the main 

contribution of this work: 

 

(1) We proposed and developed a novel approach for 3D/4D facial feature detection 

and tracking. This approach has extended the global statistical shape model to an 

integrated global and local shape model to improve the tracking performance with respect 

to various imaging data conditions. In particular, we have presented a shape-index based 

local shape model and combined this model with the global shape model as a new 

statistical shape descriptor (so-called shape-index based statistical shape model (SI-

SSM)).  

(2) We have tested the new SI-SSM model on five public 3D/4D face databases (i.e., 

BU-3DFE [31], BU-4DFE [13], BP4D-Spontaenous [136], FRGC 2.0 [84], and Eurecom 

Kinect Face Database [132]) which cover a variety of data types, including static vs. 

dynamic, posed vs. spontaneous, high-resolution vs low-resolution, etc. 

(3) We show the merit of the new SI-SSM based detection and tracking through 

performance evaluations with respect to various authentic facial behaviors, dramatic head 

rotations, data conditions with noise, occlusion, and incompleteness, as well as 

comparison with four state of the art approaches. 

(4) We have validated the usability of our new approach through its application to 

facial expression recognition and head pose estimation. Especially, we applied a spatial-
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temporal HHM model to classify six posed expressions on 4DFE and eight spontaneous 

expressions on BP4D-Spontaneous database successfully.  

 

The chapter is organized as follows:  Section 2 presents the new statistical model and its 

construction. Section 3 describes the feature detection and tracking algorithm in detail. 

The experiments and evaluations are reported in Section 4, followed by application study 

for 3D/4D face analysis. Finally, the conclusion and future work are discussed in Section 

6. 

 

2. Shape Index-based Statistical Shape Model (SI-SSM) 

Our proposed method models both the global shape of 3D facial landmarks, as well as the 

local curvatures from patches around the landmarks. In order to construct the SI-SSM, we 

annotate the training data with L landmarks. From these annotated landmarks we are able 

to model both the global and local shapes of a face. An example of an annotated mesh 

can be seen in Figure 43, where L=83. The resulting global shape, local curvature 

patches, and the final construction of the SI-SSM are detailed in the following sub-

sections. 

 

2.1  Global Face Shape 

To model the global face shape, we first create a 𝑛 × 𝑛 patch around each of the L 

annotated landmarks for each training mesh. To construct these patches we use the 

corresponding (u, v) coordinates for each of the training data. An example of a 3D mesh 

with patches can be seen in Figure 1. 
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Given a set of M training data, each with L patches, a parameterized model, 𝑆𝐺, is 

constructed. This parameterized model contains the global shape of all of the training 

data, where  𝑆𝐺 =  (𝑥1, 𝑦1,𝑧1, … , 𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁), where N = 𝐿 × 𝑛 × 𝑛. The first step to create 

this model is aligning the N landmarks, on each of the M training data, by using a 

modified version of Procrustes analysis [57]. PCA is then applied to learn the modes of 

variation from the training data. For our experiments we keep approximately 95% of the 

variance. We can then approximate any shape by 

𝑆𝐺 = �̅� + 𝑉𝑤 (18))) 

where �̅� is the mean shape, V is the eigenvectors of the covariance matrix C, which 

describes the modes of variation learned from the training data, and w is a weight vector 

used to generate new shapes (referred to as an instance of the SI-SSM) by varying its 

parameters within certain limits. We impose these limits to ensure only valid shapes are 

constructed. For our model we constrain those valid shapes to be within two standard 

deviations from the mean (which is the allowable shape domain) 

−2√𝜆𝑖 ≤ 𝑤𝑖 ≤ 2√𝜆𝑖 (19))) 

Where 𝜆𝑖 is the i
th

 eigenvalue of C. We have empirically found, from the training data, 

2 −
+

standard deviations from the mean to be a suitable constraint for our model as this 

range gives us a good balance between speed and accuracy of model fit. A smaller 

constraint would shrink the search space and possibly miss the best fit to the input model. 

A larger domain would create an unnecessarily large search space that would have 

instances of the model that do not look like a face. 
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Figure 43.  Left: 83 landmarks defined on a face; Right: corresponding 3D patches 

with grey-scale shape index values. 

 

2.2  Local Face Shape 

To model the local face shape we apply the shape index values to represent the local 

patches. To do so, we calculate the shape index values for each of the L patches in the 

global face shape. Calculating the shape index gives us a quantitative measure of the 

shape of each patch around the L annotated landmarks. Shape index is defined as follows: 

𝑆𝐼 =
2

 𝜋
∗ 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑘2  + 𝑘1 

𝑘2  − 𝑘1 
) (20))) 

where 𝑘1 and 𝑘2 are the min and max principal curvatures of the surface, with 𝑘2 ≥  𝑘1. 

All shapes can be mapped to the range [-1.0, 1.0], where each unique shape corresponds 

to a specific shape index value. A cubic polynomial fitting approach is used to compute 

the eigen-values of the Weingarten Matrix [61] giving us 𝑘1 and 𝑘2. We normalize the 

shape index scale to [0, 1] and encode them as a continuous range of grey-level values 

between 1 and 255. To give us an efficient description of the data, we transform the shape 

index scale to a set of nine quantization values from concave to convex. Figure 44 shows 

example range meshes with the shape index values normalized to [1, 255] for illustration. 
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Figure 44. Example of shape index (grey-scale) on mesh models. 

 

Given the set of M training data with L patches where each contains the calculated shape 

index values, we construct a second parameterized model  𝑆𝐿 = (𝑆𝐼1, … , 𝑆𝐼𝑁). PCA is 

then applied to this local shape vector in the same manner as the global shape vector 

does. We construct a new vector, 𝑉𝑆𝐼, which yields of the modes of variation along the 

principal axes for the local shape index values. Similar to the global shape, we can 

approximate any local patch shape using the vector, 𝑉𝑆𝐼 , and a weight vector 𝑤𝑆𝐼by 

 

𝑆𝐿 =  𝑠�̅� + 𝑉𝑆𝐼𝑤𝑆𝐼. (21))) 

 

2.3 Combined Global and Local Feature Model 

 

To take both global and local shape constraints, we integrate the two features into a 

combined feature model. To do so, we concatenate both the global and local shape 

feature vectors into one feature 

vector 𝑺𝑮𝑳, where 𝑺𝑮𝑳 = (𝒙𝟏, 𝒚𝟏,𝒛𝟏, … , 𝒙𝑵, 𝒚𝑵, 𝒛𝑵, 𝑺𝑰𝟏, … , 𝑺𝑰𝑵). Using the combined 

feature vector allows us to move the local patches, on the face data, to a more 

representative surface on the model while maintaining the constraint that we approximate 

a valid face shape in the allowable shape domain. Other methods that use statistical 
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models such as [126][127] have been successful in using statistical models to create a 

combined feature vector that incorporates both the shape and “appearance” of the face. 

The “appearance” portion (e.g. textures) of the model helps to guide the model and fit to 

new data, however, these approaches suffer from the problem of global lighting variation, 

as well as skin tone of the modeled face. The grey-level appearance information in these 

models must be normalized in order to handle this lighting variation. Our SI-SSM uses 

shape index values to model our local features, which guide our model and fit to new 

range data. Shape index values are invariant to global lighting variation and skin tone. As 

described in the previous section, shape index is a quantitative measure of shape, so using 

these features our model does not encounter the same issues that similar “appearance” 

based solutions do.  

 

3. 3D/4D Landmark Detection and Tracking 

Given an SI-SSM we are able to detect and track landmarks on 3D/4D sequences of 

range data. In order to perform the detection and tracking, we must first calculate the 

shape index values for the vertices of the input range mesh. This is done in the same 

manner as described in Section 2.2. Once we have these values calculated we can then 

apply the SI-SSM fitting algorithm to the input range mesh data.  

 

First, an initialization phase is performed to give us a sufficient starting point to perform 

a local patch-based correlation search. During the initialization phase, to fit our model to 

the range data we learn the weight parameters w of the global shape by uniformly varying 

the weight vector to generate new instances of the SI-SSM. By performing this learning 



104 

 

offline, for the initialization, we are able to have precise control over which shapes are 

constructed, ensuring that the new shapes constructed are valid (within the allowable 

shape domain). Iterative closest point (ICP) [48] is used to minimize the distance between 

each SI-SSM instance and the input range data. The patches from the instance of the SI-

SSM with the lowest ICP matching score are used as the initialized starting landmarks for 

the SI-SSM. Given this global fit, we then calculate the local patch–based correlation 

score with the SI-SSM and the input range mesh. This correlation score is computed 

using a cross correlation template matching scheme [130]. The correlation score, 𝐶𝑆𝑝 is 

computed for each patch as: 

  𝐶𝑆𝑝 = 
∑ ( 𝑃(𝑖′𝑗′)∙𝑖′,𝑗′ 𝑅(𝑖+𝑖′,𝑗+𝑗′) )

√∑ 𝑃(𝑖′𝑗′)2∙∑ ′𝑖′𝑗′ 𝑅(𝑖+𝑖′,𝑗+𝑗′)2
𝑖′𝑗′

 (22))) 

where 𝑃(𝑖′𝑗′) is the computed shape index value at index (i, j) of the SI-SSM patch, and 

R(i+𝑖′, 𝑗+𝑗′) is the summation between the shape index value at index (i, j) of the SI-SSM 

patch and the corresponding shape index value on the range mesh. The final correlation 

score, CS, is computed as 

CS = ∑ 𝐶𝑆𝑝
𝐿
𝑝=1  (23))) 

This initial correlation score allows us to have a base line comparison for the local patch-

based correlation search, as well as define tighter convergence criteria. 

 

Once we have the initialized patches and initial correlation score we then perform a local 

search around each of the patches of the SI-SSM. For each patch in our model we 

construct a new patch of the same size around each of the 𝑛 × 𝑛 points of the original 

patch. For example, when n=3, we construct a patch centered on each point of the 
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original 3×3 patch, resulting in 9 new patches (as illustrated in Figure 3). The shape 

index values for each of these patches correspond to the shape index values of the 

vertices of the new patches. Using Equation 22 we compute a new 𝐶𝑆𝑝 for each of the 

new patches we created. The patch that gives us the highest correlation score is marked as 

the new patch of the SI-SSM. It is important to make sure that when all of the patches 

have been moved the new global shape of the face is with the allowable shape domain of 

2−
+

 standard deviations from the mean. From Equation 21, we can derive the 

corresponding 𝑤𝑆𝐼 vector of the newly transformed SI-SSM by the following: 

𝑤𝑆𝐼 =  𝑉𝑆𝐼
𝑇(𝑆𝐿 − 𝑠�̅�) (24))) 

  

This new weight vector is constrained to be within the allowable shape domain, and we 

approximate a new shape by again utilizing Equation 21 with this weight vector. 

 

Once we have the new approximated global shape of the face, iterative closest point is 

then used to again minimize the distance between the new SI-SSM instance and the range 

mesh. This process continues until convergence is reached. Convergence is defined by 

two main criteria: 

 

(1) The computed correlation score, CS, for the transformed SI-SSM is higher than the 

computed score in the previous iteration (for the first iteration we make use of the 

correlation score computed in the initialization phase). 

(2) The computed correlation score, CS, exhibits little to no change from the CS 

computed in the previous iteration. 
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If the first convergence criterion is satisfied after the first iteration after initialization, the 

transformed patches are discarded and the previously computed global patch shape is 

used. Due to this, we need to compute the initialization correlation score as it is possible 

in our initialization phase that our SI-SSM will find the best fit to the range mesh, and 

additional transformation(s) of the model are not required. Once we have the detected 

features for the current 4D mesh in the sequence, we then use ICP to move the landmarks 

to the next mesh in the sequence and continue the tracking of the sequence. The fitting 

process is then repeated with the previously detected landmarks used as the initial model 

fit. Table 13 outlines the algorithm, Figure 45 shows an example illustration outlining the 

fitting process, and Figure 46 shows several sample 4D range models with detected 

patches using the SI-SSM algorithm. 

 Table 13. SI-SSM fitting algorithm. 

SI-SSM FITTING ALGORITHM 

Input: Range mesh model 

1. Learn weight parameters for SI-SSM instances.  

2. Initialize SI-SSM by using ICP to minimize distance 

between instances and input range mesh model. 

3. Calculate correlation score, CS, for initialized SI-SSM. 

4. Perform local patch-based correlation search. 

5. Constrain transformed patches from step 4 to be within 

allowable shape domain. 

6. Calculate new correlation score for newly transformed patches. 

7. Compare new correlation score to score of previous iteration. 

8. Repeat steps 4-7 until convergence. 

Output: Detected patch landmarks on input range mesh. 
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Figure 45. Example of correlation search between a SI-SSM patch and input range 

model patch at size of n×n, (where n=3 for instance). 

 

 

 
Figure 46. Tracked frames from BU-4DFE displaying an angry expression. 

 

4. Experiments and Evaluation 

4.1  Databases 

Five public face databases have been used for our study including three static and two 

dynamic databases (as shown in Table 14, and Figures 47 and 48 for examples). 

(1) BU-3DFE [31] consists of 100 subjects each displaying one neutral expression 

and four intensity levels of six deliberate expressions.  

(2) Eurecom Kinect Face Database [132] consists of 52 subjects, displaying 9 

deliberate expressions, obtained through the Microsoft Kinect [86]. 
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(3) FRGC 2.0 [84] consists of 466 subjects displaying two different deliberate 

expressions.  

(4) BU-4DFE [13] consists of 101 subjects with sequences of six different deliberate 

expressions.  

(5) BP4D-Spontaneous database [136] consists of 41 subjects, each consisting of 8 

different spontaneous expression sequences (e.g., joy, embarrassment, surprise, disgust, 

fear, sadness, pain, and anger). The expressions were elicited through activities including 

film watching, interviews, and experiencing cold pressor test, etc. The database includes 

the 3D dynamic model sequences, texture videos, and annotated action units (AU). Table 

2 lists more details pertaining to each database. 

Table 14. Summary of 3D/4D Databases. 

3D/4D DATABASE SUMMARIES 

Database Modality Type 

Number  

of  

Subjects 

Resolution  

(# of vertices) 

Number 

 of 

Expressions 

Number of 

Models 

3DFE Static Deliberate 100 8,000 7 2,500 

4DFE Dynamic Deliberate 101 30,000 6 

606 Sequences 

(100 

frames/seq.) 

FRGC 2.0 Static Deliberate 466 100,000 2 932 

BP4D Dynamic Spon. 41 50,000 8 

328 Sequences 

(1,500 

frames/seq.) 

Eurecom Static Deliberate 52 65,000 9 936 
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Figure 47. Sample frames fit with SI-SSM algorithm from the Eurecom Kinect Face 

Database, showing robustness to occlusion, noise, and missing data. 

 

 
Figure 48. By row: FRGC 2.0, BU-4DFE, BU-3DFE, and BP4D-Spontaneous 

 

 

4.2  Feature Detection and Tracking on Five Databases 

To evaluate the accuracy of detecting and tracking landmarks using our SI-SSM method, 

we calculate the mean squared error between the ground truth and our detected/tracked 

landmarks (centroids of patches). We do this by calculating the one-point spacing 

between each landmark. The one-point spacing is defined as the closest pair of points on 

the 3D scans (0.5mm on the geometric surface). We treat the unit error as equal to 1 point 
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spacing, so we can compute the average of the point distances between the sets. Table 15 

details the error rates, mean squared error (MSE), for all five tested databases. 

Table 15. Error rates for all 5 databases. 

Database 
3DFE  

[31] 

4DFE 

[13] 

FRGC 2.0  

[84] 

BP4D  

[136] 

Eurecom  

[132] 

Error Rate  

(MSE) 
9.6 3.2 11.8  2.9 4.4 

 

Note that the ground truth feature points that have been used for comparison in each 

database are obtained as follows: 

(1) For 3DFE and 4DFE databases, we used the associated feature points (N=83) 

(released from the databases) as ground truth; 

(2) For FRGC 2.0 and Eurecom databases, the ground truth feature points (N=83) 

were obtained through our manual annotation; 

(3) For BP4D-Spontaneous database, the ground truth feature points (N=83) were 

obtained by a semi-automatic method: First, we utilized the Kinect face tracking API [86] 

and modified it for 3D range data tracking.  To modify the Kinect face tracking algorithm 

a multi-rendering is done to render the 3D range data in a suitable depth and RGB format. 

Second, the 2D coordinates are converted into model space to acquire the 3D landmarks. 

Finally, we manually correct the feature points that were erroneously detected or mapped.  

 

As can be seen from Table 3 our proposed algorithm performs well on the 4DFE and 

BP4D databases. The relatively higher error rate on the 3DFE can be attributed to the low 

resolution of this database. Also, the relatively higher error rates on the FRGC and 
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Eurecom databases can be attributed to the greater level of noise and holes in these 

datasets. 

 

4.3  Performance Evaluation 

We also conducted three separate experiments on the BP4D database [136], which were 

split into the following categories:  (1) expression segments, (2) rotations, and (3) 

occlusions/incomplete data. The details and errors statistics are detailed in the following 

sub-sections. 

 

4.3.1 Spontaneous Expression  Segments 

The BP4D [136] includes 8 tasks that are meant to elicit an emotional response. Those 

emotions include happiness, sadness, surprise, embarrassment, fear, pain, anger, and 

disgust. We test the accuracy of our algorithm on segments containing 8 explicit 

expressions and plotted the average error in point spacings. For all of the tested 

expression segments there is a MSE of 3.1, the average point spacing error for each 

landmark (where L=83) along with the standard deviation can be seen in Figure 49. As 

can be seen from this figure, there is a small amount of variance between each of the 83 

landmarks, with respect to their average error, thus showing it’s robustness to different 

expressions. Two examples of spontaneous expressions can be seen in Figures 50 and 51. 
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Figure 49. Average error in point spacings of spontaneous expression sequences. 

 

 
Figure 50. Example of a tracked sequence of a subject in a joyful condition when 

watching a film 

 

 
Figure 51. Example of a tracked sequence showing a startled emotion 
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4.3.2 Rotation Sequences 

We also tested our algorithm on sequences that contain rotations only. We are able to 

successfully fit rotations in the range of [-90, 90]. Figure 12 shows an example of 

rotations between [0, 90]. For all tested rotation sequences there is a MSE of 3.2. Figure 

10 shows the average point spacings error along with the standard deviation for each of 

the, L=83, landmarks. As can be seen in Figure 10 the average error for rotations is fairly 

stable across all for all landmarks degrees, showing robustness to large rotations. Figure 

52 show the average error, for all landmarks, across each of the degrees in the range [0, 

90]. 

 
Figure 52. Average error in point spacings for sequences displaying occlusions from 

rotations. 
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Figure 53. Average point spacing error in relation to rotation degree. 

 

The results displayed in Figure 53 demonstrate the SI-SSM is robust to large rotations. 

For all rotations the average point spacing error is fairly consistent remaining under 2, 

with the largest error being 1.6 and the smallest error being 0.5. Two examples of 

sequences with large head rotations can be seen in Figures 54 and 55.  

 

 
Figure 54. Example of 4D data showing rotations from 0 degree to 90 degree 
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Figure 55. Sample frames displaying pitch and yaw pose estimations. Top Row 

(Pitch): -20, -23, -27; Bottom Row (Yaw): -37, -49, -51;. Note: The last column is the 

same model from the previous column. The models (with eye glasses) are rotated to the 

frontal view so that they show the mesh deformations (or missing pieces) that this 

degree of pose causes. 

 

4.3.3 Low Quality Sequences 

We also tested the accuracy of our algorithm on sequences that contain low quality data. 

We define low quality data as missing data from self-occlusion (eye glasses, hand in front 

of face, etc.), noisy data (beards, distorted patches caused by 3D data capture, etc.), and 

incomplete scans containing holes and isolated patches. Figures 56-58 illustrate these 

types of low quality data sequences.  
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Figure 56.  Tracked frames displaying a surprised expression. NOTE: the bottom 

right frame in the sequence is missing data on the side of the face, and the SI-SSM 

still fits to the missing data showing robustness to missing data. 

 

 
Figure 57. Tracked data showing robustness to occlusion. 
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Figure 58.  Tracked data with partial occlusions (robustness to noise and missing 

data). 

 

Our test results on low quality data shows the MSE error is 3.6. Figure 59 shows the 

average error in point spacings, along with the standard deviation for low quality data 

While the MSE is slightly higher and the average errors show more variance than other 

tested data, the SI-SSM is still able to successfully fit to this data with a generally low 

error rate, showing robustness to low quality data.  

 

 
Figure 59. Average error in point spacings of low quality data. 
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4.4  Comparison to the State-of-the-Art 

We also compared our SI-SSM algorithm, using 10% of the data for training and the rest 

for testing, against other state of the art algorithms. We compared our results against a 2D 

CLM mapped to 3D [134], TDSM [83] and Sun et al. [48] on the BU-4DFE and BP4D 

databases. For all comparisons we use the centroid landmark in each of the patches for 

comparisons, and report the MSE of the average point spacings. Note that the data 

tracked with the 2D CLM [134] only used 66 landmarks while we used 83 landmarks. In 

order to perform these experiments we selected the common sub-set of the two sets of 

landmarks, resulting in 49 landmarks for comparison. These landmarks comprise of the 

left and right eyes, nose, mouth and landmarks on the contour of the face. The 3D 

features mapped from 2D CLM have an error rate of 13.2 as compared to ours of 2.9. The 

high error rate of the 2D CLM based method can be attributed to frames where the 

tracking was lost and the method was unable to find a correct fit, as well as the mapping 

error from 2D to 3D. Figure 60 shows an example where the 2D CLM based method was 

unable to detect the correct landmarks while our SI-SSM was successful in detecting 

them. As can be seen from Table 16, which shows the results from these comparisons, 

our SI-SSM method outperforms the compared state of the art methods.  

 

We also compare our work to Nair et al. [55] on the BU-3DFE database. For this 

experiment, we followed their detailed procedure. We selected four landmarks, the inner 

and outer corners of the left and right eyes, to compare to the ground truth. Figure 61 

shows the mean normalized errors (MNE) for each of the four selected landmarks for all 

seven expressions in the database. 
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Table 16. Comparison of SI-SSM, TDSM, Sun et al., and 2D CLM Mapped to 3D.  

Comparison With State-of-the-Art 

 

3D Mapped From  

2D CLM  

[134] 

TDSM 

 [83] 

Sun  et al 

 [48] 
SI-SSM 

BU-4DFE N/A 3.7 6.3 3.2 

BP4D 13.2 4.0 7.2 2.9 

 

 

 
Figure 60. SI-SSM (left side), 3D mapped from 2D CLM (right side). NOTE: In the 

sequence that contains this frame showing a rotated head pose with a painful 

expression from BP4D-Spontaneous database, there are approximately 100 frames 

that the 2D CLM fails to correctly fit (similar to this figure) whereas the SI-SSM is 

successful. 

 

 
Figure 61. MNE comparison to Nair et al. [55] for expressions in BU-3DFE. 
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5. Applications 

5.1  Posed and Spontaneous Facial Expression Classification  

5.1.1. Approach 

To validate our proposed method, we apply it to facial expression classification problems 

for both posed expressions and spontaneous expressions, respectively. We take the 

component based approach for the classification. Given the tracked feature points, we can 

easily segment the facial model into several component regions, such as the eyes, nose 

and mouth. Fig. 38(a) shows an example of the resulting segmentation. 

 

(i) 3D Component Feature Representation 

To represent the 3D features, the same method was utilized as described in chapter 6. The 

details of this method can be seen (chapter 6) in sub-sections 4.3.1, 4.3.2, and 4.3.3. The 

next sub-section details a component-based spatial-temporal HMM Model. 

 

(ii) Component-based Spatial-Temporal HMM Model 

In order to determine a class of a certain expression, results from S-HMM and T-HMM 

are integrated as follows: 

 

(a) The expression class follows one of the results of S-HMM and T-HMM if both 

are the same. 

(b) The expression class follows the result of T-HMM if both are not the same, but 

the T-HMM has the more votes for a certain expression among six components than the 

votes of the other expressions from S-HMM.  
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(c) Vice versa, the expression class follows the result of S-HMM if both are not the 

same, but the S-HMM has the more votes for a certain expression among six frames than 

the votes of the other expressions from T-HMM.  

(d) If none of above, the likelihoods (maximum probability) each individual 

expression from S-HMM and T-HMM are added, resulting six likelihoods (if six 

expressions). The one with highest likelihood is chosen as the recognized expression.    

 

5.1.2 Experiment results on face expression classification using spatial-temporal HHM 

The posed facial expression database (BU-4DFE) and spontaneous facial expression 

database (BP4D-Spontaneous) are used for experiments on face expression classification.  

 

(i) Posed expressions: For training sequences of 4DFE, 1,200 sets of six consecutive 

frames were randomly chosen for training.  Following the HMM training procedure (k = 

6), we generated the spatial HMM and temporal HMM for each expression. The 

recognition procedure is then applied to classify the expression of each input sequence (k 

= 6). Based on the 10-fold cross validation approach, the six prototypic facial expressions 

are classified with an accuracy of approximately 92.3%. 

 

(ii) Spontaneous expressions: For training sequences of BP4D-Spontaneous, 2,560 

sets of six consecutive frames were randomly chosen for training.  Similar to the above 

procedure, we generated the spatial HMM and temporal HMM for each expression. The 

recognition procedure is then applied to classify the expression of each input sequence (k 
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= 6). Based on the 10-fold cross validation approach, the eight spontaneous facial 

expressions are classified with an accuracy of approximately 83.7%. 

 

5.2 Pose Estimation 

Using the same approach as detailed in chapter 6, section 4.5, pose estimation is 

performed using the results from the SI-SSM detection. The comparisons show 2.53, 

1.35, and 2.44 differences in degree across pitch, roll, and yaw respectively. Fig. 32 

shows sample models displaying yaw, roll, and pitch with estimated poses. 

 

6. Discussion 

In this chapter we have presented a novel method of detecting and tracking landmarks on 

3D and 4D data using a shape index-based statistical shape model. The SI-SSM has been 

tested on five public 3D/4D face databases. The SI-SSM has shown robustness to 

rotations, occlusions, and low quality data, as well as superiority to the compared state of 

the art methods, given only the geometric information used. In a similar fashion to the 

ASSM algorithm, the SI-SSM also lends itself well to parallelism. Instead of fitting 

temporal data in the sequence, each of the patches in the model could be analyzed in 

parallel. This would give a massive increase in speed for the fitting process, as well as 

enabling a further study into finding the best patch size. This is due to allowing larger 

patches to be quickly and accurately fit to the input data. 
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Chapter 8 

Conclusion 

1. Findings 

The research presented in this dissertation is aimed at studying the benefits of using 3D 

information for eye gaze estimation, face and sketch recognition, facial activity analysis, 

and feature tracking. Utilizing tracked 2D facial features, a new scale-space topographic 

modeling approach for modeling 3D facial appearance and eye sight directions has been 

presented giving promising results. Extending the idea of creating 3D data from 2D, a 

fusion-based face recognition method was detailed. Fusing multiple frames of a subject 

rotating their head, almost doubled the recognition rates under strong shadow, which is a 

challenging task. Next, using 2D sketch data and detected facial landmarks, a 3D sketch 

model was created. This 3D sketch model was then used for 3D face sketch recognition 

achieving a recognition rate of approximately 92%. 

 

While the first half of the dissertation involved creating 3D data from 2D, the second half 

involves research into directly utilizing 3D range data. The first study into using explicit 

3D data involves the construction of a new dynamic curvature based descriptor for facial 

activity analysis. The descriptor was validated in terms of determining neutral vs. non-

neutral, multiple prototypic expressions, and their intensity levels. The last part of this 

dissertation studies 3D/4D feature tracking by proposing two new statistical-based 

models. The first uses the explicit shape of a 3D model to detect and track features in 3D 
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and 4D. The second proposed method makes use of both the global and local shapes of 

the 3D data to detect and track the 3D features. Both methods have been shown to 

outperform current state-of-the-art methods. 

 

2. Applications 

The studies in this dissertation are applicable to a wide range of fields. The construction 

of 3D data from 2D presented in Chapter 2 has been validated in the use of eye gaze 

estimation. This method is applicable to others areas as well including expression 

analysis, 3D face recognition, and entertainment. This is also detailed in Chapter 4, where 

3D sketch data is constructed from 2D sketch data for face sketch recognition. In Chapter 

3, the presented fusion-based face recognition method has a wide range of uses from law-

enforcement, government, and security. The methods detailed in this dissertation are also 

applicable to track features on non-face data such as hands [150]. 

 

In Chapters 5 and 6 the presented 3D feature detection and landmark methods are 

important to many fields. Feature detection is an important first step for many 

applications. These include face expression analysis, face recognition, video 

segmentation, subject/object verification and identification, and entertainment. 

 

3. Limitations 

While the presented methods and evaluations show promising and exciting results, there 

are some limitations that need further research to alleviate. 3D data is widely known to be 

invariant to pose changes, however, the proposed method of constructing 2D to 3D data, 
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currently, only covers a small range of poses. This is, in part, due to some of the 

limitations of detecting and tracking features in 2D to construct the 3D models. This also 

extends to the 3D face sketch recognition presented in this dissertation. This method also 

requires off-line work which makes this method currently unfeasible for real-time model 

creation. 

 

The results presented for the fusion-based face recognition method are very encouraging 

and show a strong case for the using fusion-based methods to increase recognition rates, 

however, the type of data used can impose a limitation. A sequence of rotated heads is 

not always going to be readily available, so this method may not be applicable in all 

scenarios. Further study into alternative, effective ways to gather pseudo-3D data from 

images is required. 

 

The work presented in this dissertation on 3D facial activity analysis, while promising, 

also suffers from some limitations. Only one public database is tested on that includes 6 

prototypic expressions, along with a neutral expression. This method needs to be tested 

and evaluated on the largest and most challenging 3D face databases available [136]. 

 

Chapters 6 and 7 present novel methods for detecting and tracking 3D features, and show 

an improvement over current state-of-the-art methods. Although the results are very 

encouraging there are also some limitations to these methods. Both methods that are 

presented are person-dependent requires a large number of statistical models to 

accurately detect and track landmarks on multiple subjects. Further study into a 3D 
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person-independent, statistical model is needed. Also, each of the models is linear in 

nature. This limits the number of “dynamic” expressions that can ultimately be modeled, 

causing some sequences to have sections that are unsuccessfully detected and tracked.  

 

When using a shape index-based statistical shape model, the size of the patch is an 

important topic and one that needs to be studied further. If the patch size is too small the 

“true” shape of the local regions around each landmark will not be correct. However, too 

large of a patch and you will have “fake” features (e.g. not the real shape, or possibly the 

shape around a different feature to be modeled). The size of the patches also effects the 

time it takes to find the correct fit. When thinking in terms of real-time applications the 

optimal patch size would be one that balances accuracy of fit vs. speed at which the 

model is fit. This is a difficult problem to solve, as it seems natural that finding the 

correct patch size would be task/person dependent. 

 

4. Discussion and Future Work 

Each of the topics covered in this dissertation are open questions within a vibrant 

community of scholars. The results presented compare favorably or better to the current-

state-of-the-art. The evaluations presented in this dissertation validate the efficacy of each 

of the proposed methods. With the wide range of applicable fields, as discussed in section 

2 of this chapter, the methods are important topics that require further study and 

evaluation.  
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The work presented in this dissertation lends itself well to future work by allowing a 

combination of multiple topics and algorithms. Face sketch recognition is a very 

important field that requires further investigation into. While the 3D face sketch 

presented shows encouraging results, there are many open questions that still need to be 

answered including:  

 

(1) Can 3D face sketch recognition out-perform 2D?  

(2) Will a fusion-based, or multi-modal-based approach increase recognition rates? 

(3) What are the most important features for face sketch recognition? Are they similar 

to image-based face recognition? 

(4) Are similar methods used for image-based face recognition sufficient enough for 

face sketch recognition, or are new, innovative solutions required for optimal recognition 

rates?  

 

These questions help drive the motivation for the future work of this dissertation. I will 

investigate the above questions, and more, by combining statistical model-based learning 

(e.g. ASSM, SI-SSM), 3D face sketch data, and a fusion/multi-modal based approach to 

face sketch recognition. The use of a generic reference model to create the 3D face 

sketches has the advantage of all 3D mesh models are aligned to the same reference 

frame. This allows for easy registration of multiple meshes, which is a great fit for 

statistical model-based approaches. Utilizing this approach, some statistical 

combinations, of the following features, can be used for face sketch recognition; (1) 

explicit 3D shape of the mesh model; (2) sketch “texture” information; and (3) shape-
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index values of deformed reference mesh. Due to the novelty of the presented 3D face 

sketch approach; this type of work would be the first of its kind in 3D face sketch 

recognition.   

 

Using a statistical model of variance for 3D face sketch data would also allow for the 

creation of a real-time system that would allow a forensic artist to create/match 3D face 

sketches from eye witness statements. This could be an invaluable tool in helping law 

enforcement apprehend possible suspects. Given eye-witness statements regarding a 

suspect, the forensic artist would be able to use the system to create (deform reference 

mesh) 3D characteristics of the subject using a supplied user interface tool. Once the 3D 

representation of the suspect is created, the software would allow the user to search a 

database of possible 2D and/or 3D image and sketch mugshots.   

 

There are various types of research problems when dealing with sketch recognition. From 

text to sketch, image to sketch, and sketch to image to name a few. These are all 

challenging fields that present their own unique set of problems. In creating a real-time 

system that can create 3D sketch models these types need to be factored in. Each of them 

are going to product different resulting sketches, as well as their own biases towards the 

data (i.e. different sketches can look very different). An important question to ask is 

“How can I infer data from on type to another?” Answering this question will require 

new and innovative algorithms to handle 3D data. A possible solution, and future work 

for this dissertation, involves the use of different shape descriptors to model the data. 

While shape index is an intuitive to describe shape, it may not be the best/only approach 
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to this problem. 3D edge information and temporal shape information can be used 

separately or combined with the available shape index data. This can give us a more 

accurate representation of the data that would allow us to infer from multiple data types. 

 

Another major issue when constructing this type of system is the length of time  it takes 

to successfully model the 3D sketch data. Incorporating a parallel algorithms could help 

alleviate many of the speed issues. This begs the question: “How can we leverage these 

parallel algorithms to efficiently and accurately create 3D sketch data?” One possibility is 

the segmenting of the 3D data, and “splicing” the model together. Each of the slices of 

the 3D sketch data can be analyzed in parallel, and then combined to create a final 3D 

sketch model. Parallel algorithms are a natural and intuitive solution to creating real-time 

3D sketch data, and one of the major problems to be studied from this dissertation. 

 

There are some challenges in the creation of this type of system. First, a more 

automatic/intuitive way of generating the initial features for the 3D sketch model would 

be required. Secondly, a sufficiently large sketch database would be needed for creation 

of the 3D statistical model. These challenges, as well as the questions that still remain in 

both 2D and 3D face sketch recognition will be the main focus of my future research. 
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