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ABSTRACT

This paper presents a method for computing strain images of a
deformable object in a video sequence. The method includes
two steps: in the first step, the motion data between a pair
of video frames is generated using a robust optical flow al-
gorithm. In the second step, a strain image is computed by
applying a gradient filter to the motion data. The efficacy
of the method was demonstrated using 30 video sequences
that captured human facial expressions under different light-
ing conditions. Several key factors and their impact on the
quality of strain images were also discussed.

Index Terms— Strain Imaging, Optical Flow, Face Video.

1. INTRODUCTION

Imaging objects’ elastic properties based on the observed de-
formation has a broad range of applications. For example,
a large amount of research has been done in elastography for
cancer diagnosis in the breast, kidney and heart [1, 2], because
diseased tissues are correlated with change of elasticity (stiff-
ness). Measuring tissue elasticity also plays an important role
in biomechanical modeling for image registration and surgery
planning, because modeling accuracy is dependent upon the
material parameters being used [3, 4]. Strain imaging has also
found applications in damage detection in composite materi-
als [5]. Recently, dynamic strain images have been used in
face recognition and forensic investigations [6].

There are two basic approaches to image elastic proper-
ties: (1) Recover the absolute values of elastic moduli by
solving an inverse problem; (2) Compute strain from mea-
sured displacement (motion) and then use the spatial varia-
tion of strain as an indicator of underlying tissue properties.
Since an inverse problem is often ill-posed and highly nonlin-
ear, the computational complexity of the first approach is rel-
atively high. Various regularization techniques must be used
in order to stabilize an inverse solution [7]. The second ap-
proach is essentially a forward problem and therefore can be
implemented with conventional image filtering methods.

Modalities that have been used in strain imaging include
ultrasonic, magnetic resonance (MR) and optical sensors. Elas-
tograms generated from ultrasonic and MR sensors are suit-

able for examining property abnormalities of internal organs.
However, ultrasonic images are plagued by artifacts while
high resolution MR images are more expensive. In addition,
the imaging devices are often designed to be operated in a
well-controlled clinical environment, which restrict their us-
age to medical fields only.

In this paper, we propose a strain imaging method that is
based on the optical flow technique and the gradient filtering.
The proposed method has several advantages:

1. It is efficient and can be used to process large amounts
of video in a reasonable time framework. With further
optimization, it can also be considered for real time ap-
plications.

2. Video data can be acquired using optical camcorders.
Strain images derived from those videos are adequate
for many applications. The method can be used in both
indoor and outdoor settings. For example, it can be
used to monitor the structural fatigue and damage of
endangered bridges and buildings. It can also be used
to test the strength and durability of fabrics and other
man-made materials.

3. Because of its non-invasive nature, the proposed method
can be applied to areas besides facial strain analysis.
For example, it is particularly suited for skin cancer di-
agnosis and quantitative assessment of burn scars.

2. METHOD

Two solution strategies can be employed to compute strain
images. The first is to integrate the strain definition into the
formulation of optical flow equations so that strain can be de-
rived directly from the image intensity. This approach skips
the intermediate steps and is potentially more efficient. How-
ever, computing high order derivatives from original images
without appropriate processing could cause numerical diffi-
culties because such a solution is very sensitive to image noise.
The second approach is to compute motion and strain sepa-
rately. This approach is more flexible because it allows us to
examine the quality of motion data before they are processed
by the strain filters. In this study, we use the second approach.



2.1. Compute Motion Using Optical Flow Method

Optical flow is a well-know motion estimation technique that
is based on the brightness conservation principle [8]. Two
conditions must be satisfied in order to obtain a reliable solu-
tion: (i) the intensity of a point on a moving object remains
constant across a pair of frames, and (ii) pixels in a small im-
age window move with a similar velocity. The optical flow
equation is often expressed as:

(∇I)T
p + It = 0, (1)

where I(x, y, t) is the image intensity as a spatial and tempo-
ral function, x and y are image coordinates and t is time. ∇I

and It are the spatial and temporal gradients of the intensity
function. p = [p = dx

dt
, q = dy

dt
]T denotes horizontal motion

and vertical motion.
To ensure the high quality of motion data, we experi-

mented with a few different implementation methods as dis-
cussed in [9]. We found that the method formulated in a ro-
bust estimation framework yielded consistent and reliable re-
sults [10]. Therefore, we used this method to generate all
motion data for the subsequent strain computation.

2.2. Compute Strain Using Gradient Filters

Considering a deformable object in a two dimensional space,
its motion can be described by a displacement vector u =
[u, v]T . Assuming a small motion, a finite strain tensor can
be defined as:

ε =
1

2
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or in an expanded form:
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where (εxx, εyy) are normal strain components and (εxy, εyx)
are shear strain components.

Since strain is defined with respect to the displacement
vector (u, v) in a continuous space, we make the following
approximation in order to estimate strain from the discrete
optical flow data (p, q):

p =
dx

dt

.
=
4x

4t
=

u

4t
, u = p4t, (4)

where4t is the elapsed time between two image frames.
If we compute optical flow and strain using a fixed frame

interval throughout a particular video sequence, we can treat
4t as a constant and estimate the partial derivatives as follow:
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The above computation scheme can be implemented by
applying the Sobel filters to the optical flow data:
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where (Sx, Sy) are the Sobel filters and ∗ is the convolution
operator.

Given (∂u
∂x

, ∂u
∂y

, ∂v
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, ∂v
∂y

), we can obtain strain components
(εxx, εyy, εxy, εyx) by the definition of (3).

Under the uniform stress, large strain values correspond
to low elastic moduli and vice versa. Therefore, elastograms
based on the absolute strain value or relative strain ratio can
be used to reveal underlying elastic property changes [2]. For
this purpose, we compute a strain magnitude as follow:

εm =
√

ε2
xx + ε2

xy + ε2
yx + ε2

yy. (12)

All strain values can then be visualized as images or be further
processed for a specific application.

3. EXPERIMENTAL RESULTS

3.1. Data Set

Videos used in this study came from a database that contains
videos of over 100 subjects. Each subject was asked to show
various facial expressions. Videos were acquired using a Can-
non XL1S camcorder with a speed of 30 frames per second.
Each subject has a video sequence of over 4000 frames with
a resolution of 480 x 720 pixels. Sequences of 30 subjects
randomly selected from the database were used in this exper-
iment. Two lighting conditions were considered: regular light
and shadow. Figure 1 shows a few sample frames.

3.2. Strain Images

Strain values vary over a wide range, from negative to posi-
tive, which make it difficult to visualize. We took the abso-
lute values of each strain component and normalized them to
a scale of 0-255 grey levels. Figure 2 shows a typical strain
magnitude image obtained using two frames (1142 and 1144)
that were extracted from a sequence in which the subject grad-
ually opened his mouth.



(a) Regular Light (b) Shadow

(c) Regular Light (d) Shadow

Fig. 1. Videos acquired under different lighting conditions.

Motion between the two frames occurred mainly in the
lower portion of the face, which was clearly captured in (Fig-
ure 2 (d)), while the horizontal motion was almost negligible.
Note that the bright pixels along the right boundary in Figure
2 (c) are noise and were not used in strain computation. As a
result, the lower portion of the face has large strain values,
while the background has small random strain values only
(Figure 2 (e)). As can be seen in the zoomed-in view (Figure
2 (f)), strain distribution of skin is smooth and continuous, a
characteristic of deformed soft tissues.

On the other hand, strain discontinuities were observed
along the lips and the jaw line. We call this type of strain
pseudo strain, because it has no connection with true elastic-
ity. Instead, it is caused by the brightness contrast between
the background and a moving object. The pseudo strain can
also be observed when a subject suddenly shakes his/her head
or blinks his/her eyes.

4. DISCUSSIONS

The quality of a strain image can be affected by many factors,
including those commonly encountered in imaging problems.
We discuss two key factors by means of both visual examina-
tion and quantitative measures.

4.1. Frame Interval

Because of the small motion constraint imposed on the optical
flow equation, the interval between two frames has a strong
impact on the quality of motion data, which in turn will effect
the quality of strain images.

Figure 3 shows three strain magnitude images using frame
pairs of increasing intervals. As expected, strain deteriorated
rapidly as the interval increased, and eventually became mean-
ingless when the interval was greater than 5. To provide more
quantitative descriptions, we computed a strain difference (SD)

(a) Frame 1142 (b) Frame 1144

(c) Horizontal Motion (u) (d) Vertical Motion (v)

(e) Strain Magnitude (f) Zoomed-in view

Fig. 2. Examples of optical flow and strain images.

between two images that have interval m and interval n:

SD =

ROI
∑

i=0

(Sint=m(i)− Sint=n(i))2, (13)

where ROI is a selected region of interest and S represents a
strain component.

Since a frame interval of 2 usually yields good strain re-
sults, we took a strain image (interval = 2) as the base im-
age, and then computed the differences between the base im-
age and a series of strain images with intervals from 1 to 8.
The results were plotted in Figure 4. It is clear that all strain
components show marked deviation from the base image. It
should be pointed out that frame interval is closely related to
the video capture speed, and therefore an optimal interval is
really task-dependent.

4.2. Lighting Condition

It is interesting to notice that lighting conditions do not cause
significant deterioration of strain quality, even when severe
shadows are present as shown in Figure 5 (b). The overall
facial strain pattern was preserved except in a few areas that
have strong light reflections caused by hair, beard, earrings,
or eye glasses. This may be partially explained by the fact
that strain (and optical flow) is more dependent upon the rela-
tive change of intensity between two frames than the absolute
intensity values.



(a) Frame 1516 (b) Strain Using Frame-1516
and Frame-1518

(c) Strain Using Frame-1516
and Frame-1520

(d) Strain Using Frame-1516
and Frame-1524

Fig. 3. The effect of frame interval on strain images.

Fig. 4. Strain differences between the base image (interval =
2) and other strain images (interval = 1, 2, ..., 8).

5. SUMMARY

In this paper, we introduced a method for computing strain
images of deformable objects in a video sequence. The method
employs a two-step approach that combines an optical flow al-
gorithm and a gradient filtering method. The two steps can be
carried out separately so that the quality of strain images can
be ensured by analyzing the motion data. Promising results
were obtained using face video sequences of 30 subjects. We
also identified a few key factors and discussed their potential
impact on strain images. Although the method was demon-
strated using face videos only, it can be applied to a variety
of areas, such as skin cancer diagnosis, face biometrics and
realistic animation.
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