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Abstract—1In this paper, we present a vision-based human-com-
puter interaction system, which integrates control components
using multiple gestures, including eye gaze, head pose, hand
pointing, and mouth motions. To track head, eye, and mouth move-
ments, we present a two-camera system that detects the face from
a fixed, wide-angle camera, estimates a rough location for the eye
region using an eye detector based on topographic features, and
directs another active pan-tilt-zoom camera to focus in on this
eye region. We also propose a novel eye gaze estimation approach
for point-of-regard (POR) tracking on a viewing screen. To allow
for greater head pose freedom, we developed a new calibration
approach to find the 3-D eyeball location, eyeball radius, and fovea
position. Moreover, in order to get the optical axis, we create a 3-D
iris disk by mapping both the iris center and iris contour points to the
eyeball sphere. We then rotate the fovea accordingly and compute
the final, visual axis gaze direction. This part of the system permits
natural, non-intrusive, pose-invariant POR estimation from a dis-
tance without resorting to infrared or complex hardware setups. We
also propose and integrate a two-camera hand pointing estimation
algorithm for hand gesture tracking in 3-D from a distance. The
algorithms of gaze pointing and hand finger pointing are evaluated
individually, and the feasibility of the entire system is validated
through two interactive information visualization applications.

Index Terms—Gaze estimation, hand tracking, human-com-
puter interaction (HCI).

1. INTRODUCTION

HE ideal human-computer interaction (HCI) system
T should function robustly with as few constraints as those
found in human-to-human interaction; moreover, it should map
human gestures to application control in the most natural and
intuitive way possible. Knowledge of eye gaze and point-of-re-
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gard offers insight into the user’s intention and mental focus,
and consequently this information is vital for the next genera-
tion of user interfaces [1], [2]. Applications in this vein can be
found in the fields of HCI, security, advertising, psychology,
education, and many others [1], [3]. While eye gaze gives us a
more precise yet perhaps more transient idea of the user’s focus,
head pose gives a coarser but more committed approximation
of the user’s region of interest. As such, head pose has been
leveraged directly for coarse gaze estimation [2], video game
control [4] and navigation [5], and screen magnification [6].
Finally, hand pointing, one of the most common hand gestures,
shows us the region that the user wishes another entity to focus
on, irrespective of whether the user is actually looking at the
point himself/herself. In an HCI context, this naturally maps to
command control [7], and a few sample applications in this line
include navigation in a 3-D world [8] and TV control [9].

While many approaches use individual gestures for specific
tasks, it is uncommon to use them simultaneously. In this
paper, we propose a new algorithm for eye gaze estimation
from a distance using a 3-D eyeball/iris disk model, and we
also present a new hand pointing estimation approach in 3-D
space. We use the combination of four different gesture-based
inputs (eye gaze, head pose/position, hand pointing direction,
and mouth opening/closing) to develop a multi-gesture interac-
tion system. We demonstrate the feasibility and utility of our
system through two application case studies. One application
is the 3-D Orb File Navigator, and the other is a geographic
information visualization program (informally known as the
“Midgard viewer”). The overall system has the potential to be
extended into many different HCI applications in the educa-
tional, entertainment, business, and military sectors. We would
also argue that our system allows gesture input on a more
detailed level than that which the current wave of commercial
gesture control systems, such as the Microsoft Xbox Kinect
[10], is able to provide. Specifically, we track eye gaze and
mouth movement, and our hand tracking system incorporates a
more precise model of the hand. Moreover, we use only regular,
visible-spectrum cameras. In contrast, systems like the Kinect
are robust and reliable but at present only provide very coarse
gesture control (e.g., whole body movement); they also require
special hardware (i.e., depth cameras). It is our belief that a
combination of coarse and fine grained control will be desirable
in the next generation of gesture input device systems.

This paper is organized as follows: in Section II, we will re-
view the related work, and then we will provide an overview
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of the proposed system in Section III. Details of the new algo-
rithms for gaze estimation and hand pointing estimation will be
described in Sections IV and V, respectively. The experiments
and performance evaluations will be reported in Section VI, fol-
lowed by a system usability study with two applications outlined
in Section VII. Finally, the system’s limitations and future work
will be discussed in Section VIII.

II. RELATED WORK

A. Eye Tracking and Gaze Estimation

There has been intensive research on eye tracking and gaze
estimation for the past 30 years [3]. However, with the conven-
tional single-camera system, either the user must keep his or
her head locked in place so that it remains within the narrow
field of view, the camera must be strapped to the subject’s head,
or some other marker like a small infrared light must be worn
by the subject [11]. The resulting situation can be prodigiously
inconvenient and uncomfortable for the user. Because of the
unique reflective properties of the retina to infrared (IR) light,
some systems have opted to detect the face by first finding the
eyes [11]-[13]. While robust to visible light conditions, these
methods have issues with changes in head pose, reflections
off glasses, and even decreased reflectivity of the retina from
contact lenses [14]. An alternative approach is to use stereo
cameras [11], [13]; while robust, these systems generally re-
quire substantial calibration time. Some complex systems (like
“smart rooms” [15]) require expensive and/or non-portable
setups. Even existing, non-stereo, two-camera systems [16]
often restrict the user to a preset location in the room.

Therefore, we propose a system that first robustly locates the
face and then provides a rough approximation of the eye posi-
tions from a static, wide-angle camera view. The system then
uses this information to guide an active pan-tilt-zoom camera
to focus in on the eye area of the detected face. This allows the
user translational freedom relative to the camera, and a simple
adjustment of parameters also permits a range of movement in
depth. Our system differs from the majority of other systems
in this vein in that we do not use infrared, stereo cameras, spe-
cially-constructed hardware (like Noureddin et al. [12]), or spe-
cific room setups (i.e., “smart rooms”). We intend to leverage
this system for gaze and point-of-regard (POR) estimation.

The overwhelming majority of gaze estimation approaches
for constructing 2-D or 3-D gaze models rely on glints—reflec-
tions of light off the cornea [3]. Alternatively, eye gaze may be
determined from the pupil or iris contours [17] using ellipse
fitting approaches [18], [19]. With a sufficiently large image
of the eye, the iris contour and reflection of the screen off the
cornea can be used to determine gaze [20]. One can also leverage
the estimated iris center directly and use its distance from cer-
tain reference points (e.g., the eye corners) for gaze estimation
[21], [22]. Indeed, the entire eye region may be segmented into
the iris, sclera (white of the eye), and the surrounding skin;
the resulting regions can then be matched pixel-wise with 3-D
rendered eyeball models using different parameters [23], [24].
However, different subjects, head pose changes, and lighting
conditions could significantly diminish the quality of the seg-
mentation [24].

To bypass the issue of the diminished accuracy of iris center
detection from visible light imagery while simultaneously
avoiding the problems heir to the potential instability of iris
contour extraction, we leverage both to determine eye gaze
direction with a 3-D eyeball model. We calculate the 3-D eyeball
centers, radii, and fovea points through a unique calibration
approach. During gaze estimation, we map both the estimated
iris center and the iris contour points onto the eyeball sphere.
After converting these points into vectors starting at the eyeball
center, we then use a least-squares approach to find a vector that
is at a known angle from the contour vectors while also being
approximately in line with the iris center vector. We then find the
current position of the fovea, which is dependent on the rotation
of the eye, compute a new iris center from our initial gaze vector,
and use the vector from the fovea to this new iris center as our
final gaze direction. Our approach differs from the majority of
previous techniques, in that we map the 2-D contour pixels
onto the known 3-D eyeball; in contrast, most approaches in
this vein project the 3-D model into the 2-D plane.

B. Hand Detection and Tracking

Hand gestures offer an efficient means of human—computer
interaction [7], [10], [25], [26], and the simplest, most basic
gesture is pointing. The pointing gesture can resolve ambiguities
springing from verbal communication, thus opening up the pos-
sibility of humans interacting or communicating intuitively with
computers or robots by indicating objects or pointed locations
either in 3-D space or on the screen. However, it is a challenging
task to estimate the 3-D hand pointing direction automatically
and reliably from streams of video data due to the great variety
and adaptability of hand movement and the undistinguishable
features of the joints on the hand. Some previous work shows suc-
cess in hand detection and tracking using multi-colored gloves
[27], depth-aware cameras [28], background subtraction [29],
color-based detection [28], [30], stereovision-based approaches
[31]-[33], or binary-pattern-based hand feature detection [34],
[35]. However, the big challenge remains to accurately detect
and track the hand in spite of various hand rotations.

Motivated by recent advances in feature detection [28],
[34]-[39], we propose a novel technique to estimate pointing
direction based on two orthogonal-view cameras. Here, we only
focus on the gesture of hand pointing. We set up two regular
cameras in orthogonal positions, one on the top of the user, and
the other to the left side. Unlike binary-pattern-based approaches
[34], [35] which are limited to a certain degree of hand rotation,
we propose a hand image warping approach to transform the
original hand image to a polar-coordinate plane in order to make
the hand detection invariant to orientation. We apply two cascade
detectors based on binary pattern features and AdaBoost [40]
for hand region detection in the two views. Then, we use the
active appearance model (AAM) [41] to track the finger points
to identify the direction the hand is pointing. Extending the idea
of AAM face tracking to track landmark features of hands, we
are able to infer the orientation of a pointing finger in 3-D space.
This is done via two simultaneous captures of the hand. Using the
correspondence between the points of a hand in two orthogonal
views allows us to infer the (z, y, z) coordinates of those points,
thus resulting in a finger vector by connecting two points along
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the finger. Furthermore, the 3-D finger position can also be
mapped to the 2-D screen space.

III. SYSTEM OVERVIEW

Our multi-gesture interaction system consists of five major
components: face detection, eye area detection (wide-angle
view), iris and contour detection (narrow-angle view), gaze
calibration/estimation (narrow-angle view), and hand pointing
detection. We use a static camera for the wide-angle view;
images from this camera are used for face detection and eye
detection. Once the face and eye area centers are detected, the
detection program controls an active camera with pan/tilt/zoom
functions to capture the face area. This active camera gives
us a close-up view of the face which can then be used for iris
detection, iris contour detection, and gaze estimation. After gaze
calibration, the gaze directions and starting points (i.e., foveae)
will be estimated and then mapped to screen coordinates. An-
other important component is hand pointing gesture detection.
We set up two orthogonal cameras from the top view and side
view to detect hand regions, track the finger pointing features,
and estimate the pointing directions in 3-D space. Fig. 1 depicts
the system composition, while Fig. 2 shows the system in action.

A. Face Detection

We apply an appearance-based technique based on the work
by Viola and Jones [40] for face detection. To improve the
robustness of the face detector, we have developed a novel,
linear-time mechanism to make the system invariant to variable
lighting conditions: all features are scaled by a ratio of the
average gray-level intensity of the training samples over the
average gray-level intensity of the current search region. We use
the integral image to efficiently compute feature block intensity
levels. The best Haar-like features are selected with Adaboost;
we then used Information Gain in the Gain Ratio as a metric of
usefulness. The details of the developed face detector can be
found in [42].

B. Eye Detection (Static Camera)

Once the face is detected, we also perform eye detection
using the so-called topographic features of eyes presented in
our previous work [19]. The basic idea is to create a terrain
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Fig. 3. Head pose and position estimation.

map from the gray-scale image, effectively treating it like a
continuous 3-D surface, and extract “pit” locations as pupil can-
didates. The actual eye pair is chosen using a Gaussian mixture
model (GMM) and certain heuristics (e.g., the eye candidates
cannot be vertical). The approximate center of the two detected
eye candidates is used as the focus of the pan-tilt-zoom camera.
Note that we do not use the mutual information tracking ap-
proach presented in [19] and instead detect the eyes once every
time the face is detected in the wide-angle view.

The above stage provides an approximate localization of eyes,
allowing the active camera to zoom into the region of interest.
To detect the accurate positions of irises and further estimate the
viewing direction, we propose a new approach for 3-D eye gaze
estimation based on a 3-D iris model, which will be described
in the next section.

IV. GAZE ESTIMATION FROM THE ACTIVE CAMERA VIEW

In order to determine the gaze direction, we need to obtain a
more precise estimate of the iris center as well as find points on
the iris contour. This information will be mapped to a 3-D eye-
ball model, which consists of its position, radius, iris size, and
fovea position offset. The current eyeball position is determined
by an offset from the 3-D head pose and position; the latter is
given by an existing library [43] (as shown in Fig. 3). We then
compute the optimal eyeball rotation that fits our model expecta-
tions, and we use the rotated 3-D fovea as our gaze starting point
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Fig. 4. 3-D rendered eyeballs (white line indicates optical gaze direction).

and the vector from the fovea to the 3-D iris as our gaze direc-
tion. We will now describe the algorithms used for iris center
and contour detection, eyeball model calibration, and gaze esti-
mation, respectively.

A. Iris Center and Contour Detection

Our eye detection algorithm maps the current camera image
as a 2-D texture onto the current position of the 3-D eyeballs,
rotates the eyeballs in pitch and yaw, renders each rotated eye-
ball, and picks the rotated eyeball that looks most like the user
is looking into the camera. This is evaluated by 1) computing
the absolute pixel difference of the center region of the ren-
dered eyeball from a dark, circular template and 2) circle fitting
on the gradient magnitude image. Once the best eyeball rota-
tion and scale are determined, we rotate the eyeball back and
project into image space, giving us our 2-D iris center. Fig. 4
shows some sample 3-D eyeballs rendered at different angles.
Note that this approach differs from [24] in that 1) we map from
image to model rather than from model back to image, 2) we do
not search for the eyeball center at this juncture, relying instead
on the 3-D eyeball offsets and thus making the approach poten-
tially more efficient, and 3) we do not perform segmentation,
which is an unreliable process at best.

For iris contour extraction, we effectively shoot rays outwards
from the center of each optimally-rendered eyeball image, in an
approach analogous to [44]. For each point along each ray, we
compute its score:

score; j = my j X [(Hz . Dz]) > 0] (1)

where ¢ is the ray index, j is the pixel index, m;_; is the gradient
magnitude, H; is the normalized 2-D vector shooting outwards
from the iris center estimate, and D;_; is the normalized gradient
direction vector from dark to light pixels. We initially choose the
highest scoring point within a certain radius range, and then we
eliminate all points falling outside of a more restrictive range to
remove noise points from the eyelids and specular highlights on
the iris. The right-most column of Fig. 5 shows some examples
of iris contours.

To eliminate eyelid points, we note that the eye corners are
approximately at the horizontal poles of the eyeball; moreover,
the opening of the eyelids should be in line with the head pose
vector. We therefore rotate the contour points such that the
camera z axis is in line with the head pose vector and split the
points into two groups, one for each eyelid. We convert these

Fig. 5. 3-D iris detection and contour extraction. (Left column) Original 2-D
image. (Middle column) 3-D eyeballs rendered with the iris looking into the
camera. (Right column) Iris contours, shown as red dots between the iris and
the rest of the eyeball, found on rendered eyeball image.

points into vectors from the eyeball center, drop the = compo-
nents, and normalize the vectors. We then iteratively compute
the average vector among remaining points and remove all
points inside of the current “eyelid’s” range. We repeat this
process until the number of points remaining does not change.
We are thus left with two vectors from the center of the eyeball,
one for each eyelid, in line with the head pose. Remaining con-
tour vectors outside of the eyelids are eliminated, as are points
too close to the eyelids. The entire eyelid-finding procedure is
performed twice for each eyelid on each eye.

Since each eyeball is rendered to a certain image size, the ap-
proach is scale-invariant. In all cases, we work on the red channel
of the image, since the iris (unlike the surrounding skin areas)
generally has very low red intensity values [45]. Prior to eyeball
calibration, we use an average eyeball radius of 1.25 cm [3]. After
calibration, however, the true eyeball parameters are used.

B. Gaze Calibration

Our calibration procedure has two stages: the first acquires an
estimate for the 3-D eyeball center and radius, and the second
refines our initial estimate while also extracting the iris radius
and the position of the fovea on the eyeball surface. Note that
each eyeball is handled independently during calibration.

1) Stage 1 Calibration: Initial Estimate: Given a 3-D eyeball
radius 7, we want to find an estimate for the 3-D eyeball center £
(as shown in Fig. 6). Assuming the intrinsic camera parameters
are known, any 2-D pixel position can be converted into a 3-D
vector in world space. We operate under the assumption that, if
the user is looking straight into the camera, the eyeball center
must be somewhere along a 3-D vector starting at the camera
center and going through the 2-D iris center; that is, the gaze
direction goes from the 3-D eyeball center £ to the 3-D iris
center E’, a vector known as the optical axis. Granted, this is
not strictly true, since the correct gaze direction (i.e., the visual
axis) is a vector from the fovea through the pupil [3], and this
visual axis is offset from the optical axis by approximately 4—8°
[46]. However, we will correct for this in Stage 2.

The user first looks into the camera and then at a calibration
point P whose 3-D location is known. This gives us 2-D iris
locations m1 and m2, respectively. These points are then con-
verted into normalized 3-D perspective vectors A and B. We
want to find two points, F (the eyeball center) along vector A
and F’ (the iris center) along vector B, such that the distance
between them is 7 (the radius of the eyeball) and the vector be-
tween them points at P. Fig. 6 illustrates this idea. Let ¢, and #;
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represent the lengths such that At, = F and Bt, = E’; we can
then express our first constraint as follows:

||At, — Btp|| = r. 2)

Point E’ (or Bty) is the point of intersection between C' =
At, — P and B. This is equivalent to the point of intersection
between B and a plane determined by point P and normal NV =
(A x B x C). So, our second constraint is as follows:

_ NeP
" NeB

Given above (2) and (3) with two unknowns ¢, and ¢;, we can
derive the following quartic formula and solve for ¢,:

t b

. 3)

St Tt 4+ U2+ Vi, +W =0 4)

where
S =Y?2 4)
T=-2YZ-2(AeB)XY (6)
U=7>+2(AeB)XZ —r’Y? 4+ X? (7)
V=2%YZ (8)
W= —r?7? ©)

and

X=(AxBxA)eP (10)
Y=(AxBxA)eB (11)
Z =(Ax B xP)eB. (12)

The derivation of (4) and its solution can be found in the
Appendix.

Once we have t,, we can scale A by this value and get a 3-D
eyeball center estimate for a given radius. We cycle through the
natural range of human eyeball radius sizes (1.2 cm to 1.3 cm)
[3] in 1/10th millimeter increments and get an eyeball estimate
for each radius size. During the calibration procedure, we have
the user look into the camera first, and then look at two cali-
bration points, one near the upper left corner of the screen and
one near the upper right corner. Since we assume we know the
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screen position, size, and orientation relative to the camera, we
have the 3-D coordinates of any pixel position on the screen.
The calibration point color slowly transitions from red to blue
and back to red again to attract the user’s attention [47]. The first
calibration point is used to get our B vector. For each eyeball
estimate and each sample of the two calibration points, we use
our gaze estimation approach to determine the estimated point
of regard and get its distance from the true gaze point. These
error distances are added together, and the eyeball estimate with
the smallest error is chosen. Should gaze estimation fail on a
sample, a penalty term p is added:

. 100 x (2.0 — d?)
T

(13)

where d is the dot product of the iris center’s 3-D normalized
perspective vector and the normalized vector from the origin
(camera) to the eyeball center, and r is the eyeball radius.

Note that this approach assumes that eyeball center (E), 3-D
iris center (E’), and 3-D gaze point (P) are all coplanar, which
may not be true if the user’s head moves during the calibration
procedure; thus, we must adjust our vectors for head rotation
and translation before performing our calibration calculations.

2) Stage 2 Calibration: Refinement and Fovea Location: Due
to the optical/visual axis offset as well as user error during cal-
ibration, our initial estimates can be off slightly from their true
values. Therefore, we reset the radius to 1.25 cm and find the
best position and radius using the Nelder-Mead downhill sim-
plex method [48]. To ensure that the radius values remain rea-
sonable, we add a penalty term if the radius is outside of the
range 1.2-1.3 cm.

We also estimate the fovea position and iris radius. During
gaze estimation, each 2-D contour point is converted to a 3-D
world vector and intersected with the current eyeball sphere; we
refer to a normalized vector going from the eyeball center to one
of those intersection points as an “iris contour vector” C;. The
expected iris radius, therefore, can be stored as an expected dot
product (aveDot) between the optical axis G and each contour
vector C;. In this way, we define an “iris disk”, illustrated in
Fig. 7(a). Thus, for each position and radius estimate, we use the
“look-into-camera” frames to estimate the current optical axis
G and compute this expected dot product using an extension of
our gaze estimation approach, as shown in (15). We also com-
pute the fovea position as the intersection of the vector from the
origin to the 3-D iris center with the back of the eyeball. We use
this fovea position to compute a fovea offset such that, given the
rotation angles of the optical axis, we can get the current fovea
position.

We also add to the overall error term what we call the “optical
error,” a measure of how “circular” the contour points are on
the surface of the eyeball. Given d; as the dot product of each
contour vector C; with the optical axis G, this optical error is
the average absolute difference of each d; from aveDot. If the
contour point does not intersect with the eyeball surface, we add
1.0 for that point’s optical error.

When calibration is complete, we now have the 3-D eye-
ball center, the 3-D eyeball radius, the average dot product
(aveDot), and the fovea offset. The center can be rotated and
translated with head position and pose information, and our
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Fig. 7. (a) “Iris disk” concept: blue vectors are the “iris contour vectors,” while
the red vector is the computed (optical axis) gaze direction. (b) Optical versus
visual axis.

fovea offset is stored as a vector offset from the optical axis. In
both calibration stages, error values are scaled up to 1/10ths of
a millimeter. Also, we use 15 samples for the look-into-camera
stage, and 40 samples for each regular calibration point.

C. Gaze Estimation

For each frame, we adjust the eyeball center position based
on the current head pose and position. Using the 2-D iris center,
we want to find the iris contour points, map them to the eyeball
sphere, determine the optical axis, rotate the fovea point accord-
ingly, compute the new (3-D) iris center from the optical axis,
and finally get the visual axis as the vector from the fovea to
the new iris center. To estimate the optical axis G, we solve the
following linear equations:

Cg( Col COZ aveDot
: : : X :
Cx CY C% av | = aveDot (14)
VX VY VZ GZ 1
VX vy oz :

where the C; vectors are the contour vectors described earlier,
G is the optical axis, ave Dot is our expected dot product, and V/
is the normalized vector from the eyeball center to the iris center
point mapped onto the eyeball surface. The basic idea is to find
the optical axis G such that 1) it is parallel to V" and 2) the dot
product of G and each C; is ave Dot. Note that ave Dot, V', and
the constant 1 are repeated in their respective matrices N times,
once for each contour vector. This unique approach of mapping
2-D contour points directly onto the 3-D eyeball sphere allows
for efficient estimation of the gaze direction.

To get the visual axis, we rotate the fovea offset based on the
rotation angles of the optical axis G. We intersect the optical
axis with the eyeball sphere to get a new estimate for the 3-D
iris center, and we take the normalized vector from the fovea to
this new iris center as our final gaze direction [see Fig. 7(b)].

Once we have our current 3-D fovea position and gaze vector,
we must map this information to screen coordinates. We as-
sume that the screen’s 3-D position, size, and orientation are
already known, and so the mapping is a simple ray-plane inter-
section. We use the average position of the two foveae as our
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Fig. 8. (a) Diagram of pointing estimation system, including the hand region
detector. (b) Hand detector training process.

final starting point and the average of the two visual axis vec-
tors as our final gaze direction; this is intersected with the screen
to get our 2-D gaze point of regard.

As we mentioned earlier, we need to estimate the average
dot product and optical axis from the look-into-camera samples
during calibration. We do so with an extension of (14), resulting
in (15):

oX oy ¢ -1 0
. : . : GAY .

c¥ oY oz -1 GY 0

v Y ¢z | =] @
: : : : aveDot

VX vy vz 1

Thus, both the optical axis G' and ave Dot are determined by
solving this equation.

V. HAND TRACKING AND POINTING ESTIMATION

The 3-D hand pointing gesture is estimated from two camera
views, as shown in Fig. 8(a). There are three major stages: 1)
hand region detection, 2) hand feature tracking, and 3) estima-
tion of the 3-D pointing direction.

A. Hand Region Detection

Hand region detection is the first step towards estimating the
pointing direction. Motivated by the success of the face detec-
tion approach developed by Viola-Jones [40] using Haar-like
features and an AdaBoost cascade detector, we extend the fea-
tures to hand region detection for the pointing gesture. In order
to get reliable hand features, we use color channel arithmetic to
reduce the influence of the background. By observing that the
skin color has a much stronger red component than its green and
blue components, we compute the image by

I(z,y) = R(z,y) — max[G(z,y), B(z,y)]. ~ (16)
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Fig. 9. (a) Hand wrist estimation by 3 X 3 blocks division. (b) Image conver-
sion from Cartesian to polar coordinates, where the upper two rows are from the
side view, while the lower two rows are from the top view of the hand.

This simple process can roughly highlight the skin area. As a
result, a working image [ is generated, based on which subse-
quent operations using the binary pattern approach can be car-
ried out effectively.

1) Hand Image Warping Using Polar Coordinates: Some ex-
isting work has applied pre-designed binary patterns for hand
detection successfully [35], [37]. However, the detection is still
sensitive to the variation of hand orientations. The report in [34]
shows that only 15° of hand rotation can be detected by applying
the Viola-Jones-like approach [40]. To improve the orientation
invariance of hand region detection, we propose to warp the
hand image from Cartesian coordinates to polar coordinates. To
do so, we use the center of the window as a pole (“0”), and the
polar angle (¢) at 0° is determined by the position of the wrist
[as illustrated in Fig. 9(b)]. The radius (r) of the polar axis is
determined by the window size.

Since a hand is always connected with its corresponding
wrist, in order to estimate the wrist position, we divide the 27
x 27 hand image into 3 x 3 blocks as shown in Fig. 9(a).

The fist is contained in the central block, and the wrist is lo-
cated at one of the surrounding eight blocks. Due to the strong
correlation of skin colors between hand and wrist, the average
color of the block containing the wrist is the most similar to the
average color of the central block among the eight surrounding
blocks. Thus, we are able to identify the position of the wrist by
comparing the average color of the eight blocks and the central
block.

After the position of the wrist is determined, we use this po-
sition as the 0° polar coordinate, and convert the image from
Cartesian (x,y) to polar coordinates (6, r). Fig. 9(b) shows ex-
amples of the image warping from both views. As we can see,
the converted images have similar appearances regardless of
hand orientations rotated in the image plane.

2) Binary Patterns Based Hand Detection: After the image
conversion, we apply the binary patterns as shown in Fig. 8(b)
(four black-white patterns) to the warped image in (6,7) co-
ordinates. Fig. 10 illustrates an example of the binary patterns
overlapping on the warped image.

Fig. 10. Example of applied binary patterns.

Similar to the procedure used in [40], our hand detector
training procedure performs the following three operations:
1) integral image generation, 2) Haar-like features genera-
tion using the above binary patterns, and 3) building cascade
detector using AdaBoost. Fig. 8(b) shows a diagram of the
training procedure, while Fig. 8(a) depicts the hand detection
procedure as part of the 3-D pointing system.

After the detector has been built, it scans the input image in
a brute-force way. All subwindows with different size and posi-
tion in the image will be input to the detector. Once a subwindow
has passed the detector, it will be marked as a candidate.

B. Hand Feature Tracking

Given the detected hand regions, we are able to track hand
features in the limited search regions. We apply an active appear-
ance model (AAM) [41] to track 21 pre-defined feature hand
points on both the top and side camera views. AAM is a method
of matching statistical models to images developed by Cootes et
al. [41]. A set of landmark images is used to create the training
set. The model parameters that control the shape and gray-level
variation are subsequently learned from this training set.

The landmarks selected for the training set represent the
shape of the object to be modeled. These landmarks are repre-
sented as a vector, and principal component analysis is applied
to them. This can be approximated with the following formulas:
x =T + Pb, and g = g + P,b, for texture. In the shape
formula, T is the mean shape, P, represents the modes of
variation, and b, defines the shape parameters. In the texture
formula, g is the mean gray level, P, represents the modes of
variation, and b, defines the gray-level parameters.

We use AAMs to create a statistical model of the hand from
two orthogonal views via a simultaneous capture. We create
a separate appearance model for each view, and we track the
hand in the two views separately. To create the hand shape and
gray-level models, we chose 21 landmarks for the training set
images. These landmarks for the top and side views can be seen
in Fig. 17. Note that the hand detection of the previous stage al-
lows us to narrow down the search region for fitting our model
to the hand, thus reducing the time for finding a correct fit.

C. Estimation of 3-D Pointing Direction

Since the two views of the hand are tracked separately with
different models, we are able to create the best fit for the cor-
responding hand in each frame. There is correspondence be-
tween multiple landmarks in the separate views. Those land-
marks, most notably on the finger, allow us to infer the 3-D
coordinates from 2-D coordinates, and thus infer the 3-D ori-
entation of the finger. For one point that has correspondence
between the two models, we can use the top view as the (z, z)
coordinate and the side view as the (z,y) coordinate. We can
then combine both of the views to infer the (z, ¥, z) coordinates
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Fig. 11. Sample gaze results (web camera). Green circle is eyeball center, white
circle is fovea, red circle is iris center, white lines are iris contours, and the large
white lines are the gaze directions (visual axis).

for that tracked landmark. Since the z coordinate may not be the
same in both of the views, we take the average of both values to
give us a new z coordinate.

Once we have the 3-D coordinates of the tracked points, we
take two points on the finger that are “connected by a line” to
create a vector that points in the direction of the finger. The two
points selected are near the top and bottom of the pointing finger.
These were selected as they appear to give us the most reliable
vector in determining the orientation of the finger. The other
landmarks are used to create a better fit for the AAM search, as
well as for future modeling of hand details. This vector is shown
in Fig. 17 as a line pointing from the finger.

VI. EXPERIMENTS AND EVALUATION

A. Eye Gaze Estimation

We tested our gaze calibration and estimation algorithm with
various cameras and user-to-camera distances in our lab envi-
ronment. Fig. 11 shows some samples of the gaze estimation
results with the user’s head rotated in front of a web camera,
while the top row Fig. 12 presents the results from our active
zoom camera while the subject was approximately 4 m away
from the camera. The middle row of Fig. 12 also shows some
sample gaze vectors when the subject was wearing glasses. The
bottom row presents gaze results under different lighting condi-
tions; however, please note that calibration was performed only
once in lighting conditions that were the same as that of the
left-most image of the bottom row. Finally, Fig. 13 shows some
sample results from different subjects.

We also performed a gaze and point-of-regard estimation ex-
periment wherein the user was asked to look at 12 gaze markers
on the screen [effectively, the center of each brickina 3 x 4 grid,
as shown in Fig. 14(a)]. To ensure that our calibration points
were at known locations relative to the camera, we used the
built-in webcam in a laptop and measured the screen size as well
as its position and orientation relative to the camera. Camera im-
ages were 640 x 480 pixels. Each marker was focused on for
2-4 s.

Fig. 12. (Top row) Sample gaze results from active camera. (Middle row)
Sample gaze results with subject wearing glasses. (Bottom row) Sample gaze
results under different lighting conditions. Note that calibration was performed
only once in lighting conditions, the same as that of the left-most image.

(b)

Fig. 14. (a) Gaze test grid. Markers glow white when active, and box becomes
light gray when eye cursor enters region. Eye gaze cursor is the green diamond.
The numbers are drawn here for clarity but were not drawn during the test.
(b) Example of redrawn gaze points from one of our tests (the gray box is the
screen region).

We evaluated the gaze estimation accuracy by having four sub-
jects taken from students and faculty in our research lab perform a
real-time gaze tracking test. We recorded the angular error, which
is measured as the angle between the vector from the gaze starting
point to the target point and the gaze direction vector, and the
“hit percentage,” which refers to how frequently the cursor was
within the target block. Please note that a point going past the
edge of the screen is still considered a “hit” on the gaze target
block. Our results are presented in Table I; the overall angular
error was 5.953°, and the average hit percentage was 90.54%.

We also tested each individual gaze target block across all
subjects; the per-target average results are presented in Table II.
The “Gaze Target” indices correspond to the numbers on the
blocks in Fig. 14(a). The average angular error information in
Table II is also presented in Fig. 15. Overall, the results show
that the angular errors are reasonably small, while the hit per-
centage is fairly high for almost all the blocks.
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TABLE 1
GAZE ESTIMATION TEST RESULTS

Type H Mean
Angular Error 5.953°
Hit Percentage 90.54%

TABLE II

GAZE ESTIMATION TEST RESULTS: AVERAGE
ANGULAR ERROR AND HIT PERCENTAGE
FOR EACH TARGET BLOCK

Gaze Target || Angular Error || Hit Percentage

0 5.873° 100%
1 5.788° 89.86%
2 4.170° 98.57%
3 7.181° 100%
4 8.754° 98.48%
5 3.715° 83.33%
6 3.942° 60%

7 6.957° 96.55%
8 8.018° 98.21%
9 4.618° 73.24%
10 5.080° 92.06%
11 7.912° 100%

Angular Gaze Error

mg-10
m6-8
m4-6
u2-4
m0-2
T ————
Column1 Colurin 2 Row 3
Column 3
Column 4

Fig. 15. Average angular gaze error for each target. Height units are in degrees.

Fig. 14(b) shows an example of redrawn gaze points from one
of our tests.

The angular error results show promise, since natural light
methods often average around 5° of gaze error [3]. The hit per-
centage results are also encouraging, and it demonstrates the po-
tential usefulness of our gaze estimation approach in an HCI
context.

B. Hand Pointing Estimation

In order to train two detectors for two views separately, we
selected 107 positive image samples and 160 negative samples
for the top view of the hands, and 128 positive samples and 145
negative samples for the side view. Fig. 16 shows examples of
training images.

In the training stage, we applied the binary patterns to the con-
verted images in the polar coordinate system, and we generated
over 5000 features for each sample. Then, two cascade detectors
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Fig. 16. Examples of hand training images. (Top row) Positive samples of top
and side views. (Bottom row) Negative samples for both views.

Fig. 17. Sample frames from a testing video showing detected hand regions
(red blocks), tracked points (blue dots), and estimated pointing direction (green
lines) from side view (upper row) and top view (lower row).

were built based on the feature selection by AdaBoost. In the
testing stage, after the input image is converted to the working
image, each detector scans the working image in each view sep-
arately. Note that, during the hand region search, the integral
image is computed locally on the warped image in the polar co-
ordinate system. The experiments were conducted in our lab en-
vironment. The hand motion is in the range of [—60°, +60°] for
both pan and tilt. Comparing the detected hand regions with the
manual selected ones, we achieved 90% and 91% correct de-
tection rate for the top view (691 images) and side view (691
images), respectively. Those frames were collected from seven
subjects in our department. Fig. 17 shows three sample frames
from two views with the tracked points and the detected finger
vectors. In addition, the estimated hand pointing orientations
are also compared to the physically measured hand orientation
during the time of capture. Among 691 frames, 628 frames show
less than 6° difference between the two data sets. The correct
pointing rate is 91%.

To analyze the robustness of the AAM tracking, we selected
sequences of frames for both the top and side views of subjects
in our lab. We manually selected 21 landmarks on all frames
to use as ground truth. We then tracked those sequences using
the AAM and compared those new tracked points to the ground
truth. The ground truth landmarks were selected in a clockwise
direction starting on the bottom of the forearm and continuing
in order to the top of the wrist in the side view. The top view was
selected in a similar fashion starting from the right side of the
forearm and continuing in order to the left side. Following this
ordering scheme, landmarks 13 and 15 are the main landmarks
used to determine the 3-D pointing vector. It can be seen in
Figs. 18 and 19 that these points are approximately in the range
of 2 to 5 pixels of error for all subjects tested. We have found
the rest of the landmarks’ pixel error to be acceptable in fitting
the AAM to the subject’s hand.
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Fig. 18. Average errors of tracked frames from ground truth of top view (each
vertical bar across a point is the standard deviation of the error at the point).
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Fig. 19. Average errors of tracked frames from ground truth of side view.
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Fig. 20. (a) Orb 3-D File System Navigator. (b) “Midgard” Geographic Infor-
mation Visualization Application.

VII. VALIDATION: SYSTEM APPLICATIONS

To validate the feasibility and utility of the proposed new
system, we performed case studies with two applications. The
first is the Orb File System Navigator, which visualizes the file
system as a 3-D sphere with files and subdirectories floating
above the surface. The second is the “Midgard viewer,” a ge-
ographic information visualization application that allows rota-
tion and interaction with a globe of the earth.

A. 3-D File System Navigation

Rather than using the conventional system of folders and files,
the Orb navigator visualizes the current directory as a large 3-D
sphere (orb). Subdirectories are represented as smaller orbs on
the surface of this larger orb, and opening a subdirectory is anal-
ogous to zooming into this smaller orb. Files are represented as
cubes or, in the case of image files, as thumbnails floating over
the surface of the larger orb [as shown in Fig. 20(a)]. If the user
clicks on a subdirectory, the contents of that subdirectory are
loaded, and this becomes the new current directory. If the user
clicks on a file type, the system will open that file using what-
ever program is associated with that file type.

[ESIEI=)

& Midgard

Fig. 21. Selecting a zoom region with the hand cursor (white) and eye gaze
cursor (yellow) in the “Midgard” application.

Orb rotation is controlled by the pitch and yaw of the head.
We first get the normalized vector from the 3-D head position to
the center of the screen. Then, we compute the angle offset of
this vector from the normalized head pose vector. If the offset
pitch angle exceeds a certain threshold, the sphere is rotated
about the x axis. A similar procedure is performed for yaw.
Also, if the head moves backwards from its original position
enough, the camera will begin to zoom out from the orb.

‘We map finger pointing to the mouse cursor movement. Since
cursor movement even with a mouse is all relative (rather than
absolute) motion, we normalize the pointing vector and map the
x and y components directly onto the screen. When the AAM
first initializes, we record the starting z position of the hand
from the top view; if the user moves his/her hand forward by
a certain distance from that starting z position, we interpret this
as a mouse click.

The eye gaze point-of-regard is used as a second cursor. When
we are in “zoom mode,” the user can click with the primary
cursor (shown as a white diamond) and drag a box with the
second cursor (shown as a yellow diamond) to create a zoom
region. When the “hand mouse” is released, the Orb is centered
and zoomed to the selected region. The reason for using the
eye cursor like this is that it creates the possibility of fast region
zoom, since the eye can move much faster than the hand.

Using the vision library from [43], we also detect when
the mouth is open or closed and allow a “mouth click.” This
switches between “selection mode” (where hand clicks open
files and directories) and “zoom mode” (where the hand and
eye cursor form a zoom region).

B. “Midgard” Geographic Information Visualization

The controls for Midgard are mapped in a similar way as
with the Orb file viewer: head pose controls the rotation of
the earth, head position allows the user to zoom out, mouth
opening switches modes, the hand controls the primary cursor,
and the eyes control the secondary cursor. However, when the
user clicks in a region on the globe that is part of a country, the
name of that country will appear, and the national anthem for
that country plays. Fig. 20(b) shows the selection of a country
with the hand cursor, while Fig. 21 shows selecting a zoom re-
gion with the hand and eye cursors.
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TABLE III
GESTURE CONTROL MAPPING FOR TEST APPLICATIONS

Input Gesture || Control

Head pose change Rotation of orb/globe

Head moves backwards Zoom out

Hand pointing Primary mouse cursor

Mouse click

Selection mode: open file or folder /
select country and play national
Hand moves forward and back|| anthem

Zoom mode: hand moving forward
starts defining region, hand moving

back rotates and zooms to that region

Secondary mouse cursor
Eye gaze . .
(used for defining zoom region)

Toggle bet lecti
Mouth opens and then closes oggle between Selection mode

and Zoom mode

Table III defines the list of input gestures and their corre-
sponding controls used for the two applications. In both cases,
we have found that these gestures map naturally, intuitively, and
effectively to their respective commands, as can be seen in our
video demo. We believe that other applications could benefit
from similar control mappings.

VIII. DISCUSSION AND CONCLUSION

In this paper, we have presented a real-time, vision-based
system using multiple gestures for human—computer inter-
action. Moreover, we have proposed an eyeball center/fovea
offset extraction procedure and gaze estimation approach, both
of which are fully capable of dealing with head pose changes.
The hand pointing gesture is estimated and mapped to the
screen coordinate system and has replaced the mouse functions
for intuitive interaction with the screen. We have also incor-
porated other gestures, such as head pose changes and mouth
opening/closing, into the system, and we have performed case
studies on two applications.

The current work still has a number of limitations:

1) Hand gesture is currently limited to only the pointing ges-

ture.

2) The two-view camera setup limits the working space for
hand detection. A system using a single camera’s view is
to be developed in the next step of the work.

3) Eyeball-based gaze estimation is limited by the accuracy
of the head pose detection. The reliability and spatial dis-
crimination of the gaze estimation algorithm need be fur-
ther improved.

Other future work will include dealing with larger head pose
angles and increasing the robustness of the iris and contour de-
tection phases. Although the system can work even in the pres-
ence of glasses (as shown in the middle row of Fig. 12), heavy
lens glare could skew the results [e.g., Fig. 22(b)]. We would
also like to expand upon the secondary refinement pass to allow
for a more accurate estimate of the fovea. Moreover, we plan
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(b)

Fig. 22. (a) Irises are nearly obscured by the eyelids, causing the right eye
gaze estimation to fail. (b) Heavy glare on the glasses causes an incorrect eye
detection estimate.

to further develop our eyelid elimination algorithm, perhaps in-
corporating an approach analogous to that of [49]; this would
help us address cases wherein the eyes are almost closed and the
gaze results are negatively influenced, as shown in Fig. 22(a).
Finally, future versions of the dual camera system will allow
for dynamic depth changes while tracking the gaze directions
of multiple subjects.

APPENDIX A
SOLUTION FOR t, AND 1y

Let ¢, and t; represent the lengths such that At, = F and
Bty = E, respectively. Our first constraint can be expressed as
follows:

| At, — Bty|| = 7. (17)

We also know that the dot product of a vector with itself is its
length squared; so, after multiplying out and gathering terms,
we get

(At, — Bty) e (At, — Bty) = At, e At, — At, @ Bt,
— At, @ Bty + Bty e Bty
=t2 — 2t,ty(AeB) +t}
=72 (18)

Let us now look at our other constraint. We want to find a vector
going from P to At, such that it intersects B at Bt;. The inter-
section of C = At, — P and B is equivalent to the intersection
of B with a plane with point P and normal N = (A x B x C).
So

NeP

ty = .
"~ NeB

(19)
We work out N:

N=AxBx(C=AxDBx(At, — P)
=(AxB)x At, —(Ax B) x P

=t,(Ax Bx A)—(Ax BxP). (20)

Substituting this for N in (19)

_ [ta(AXxBxA)—(AxBxDP)leP

" [ta(AXx Bx A)—(Ax Bx P)|eB
_ta(AXBxA)eP —(AxBxP)eP
to(AXxBxA)eB—(AxBxP)eB’

ty

2n
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As it happens, however, (A x B x P) is orthogonal to P, so the
dot product of (A x B x P) and P must be zero. Therefore

to(Ax Bx A)e P

b= AxBxAeB-(AxBxP)eB 2
For simplicity, let
X=(AxBxA)eP (23)
Y=(AxBxA)eB (24)
Z=(AxBxP)eB. (25)

We can compute all of these ahead of time, so we now have 3
in terms of £,:

to X
tb - m. (26)
Substituting this into (18) yields
taX taX 77
2_9ot,(AeB - - =2
ta=2(AeB) |57 | T iy —z| =7 @D

Multiplying by (t,Y — Z)?

(t Y —Z)%t2 =2t ,(A8B)t, X (t,Y — Z)+t, X =12 (t,Y — 7).

(28)
Multiplying everything out

t2Y2 2V Zt3 4+ Z%2 —2(AeB) XY 12 +2(AeB) X Z12 +12 X2
= Y22 — 2°Y Zt, + 2 Z%. (29)

Grouping like terms

(Yt +(-2YZ - 2(Ae B)XY) 13
+(Z224+2(A @ BYXZ—rY >+ X°)t2+(2r°Y Z)t,—1r> Z* =0.

(30)

If we create the following variables:
S§=Y? (31)
T=-2YZ—-2(AeB)XY (32)
U=7>+2(AeB)XZ —r’Y* 4+ X? (33)
V=2rYZ (34)
W= —r222 (35)

We have after substituting into (30)
Sty +Tt3 + Ut2 + Vi, + W = 0. (36)

We can compute X, Y, Z, S, T, U, V, and W ahead of time,
leaving us with a quartic formula for ¢, , which is solvable. Given
tq, we can use (20) to get tp.

ACKNOWLEDGMENT

The authors would like to thank Mr. X. Zhang for his help on
the experiments and video recording/editing.

[1]

[2

—

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22

(23]

[24]

485

REFERENCES

Z. Zeng, M. Pantic, G. Roisman, and T. Huang, “A survey of affect
recognition methods: Audio, visual, and spontaneous expressions,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 1, pp. 39-58, Jan.
2009.

S. Zhai, C. Morimoto, and S. Ihde, “Manual and gaze input cascaded
(magic) pointing,” in Proc. CHI’99, 1999, pp. 246-253.

D. W. Hansen and Q. Ji, “In the eye of the beholder: A survey of models
for eyes and gaze,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no.
3, pp. 478-500, Mar. 2010.

S. Wang, X. Xiong, Y. Xu, C. Wang, W. Zhang, X. Dai, and D. Zhang,
“Face-tracking as an augmented input in video games: Enhancing pres-
ence role-playing and control,” in Proc. CHI’06, 2006, pp. 1097-1106.
G. G. Mateos and S. F. Muiioz, “Tierra inhospita: Exploring a virtual
world with your face,” in Proc. ACM SIGCHI Int. Conf. Advances in
Computer Entertainment Technology (ACE’05), 2005, pp. 383-384.
C. Harrison and A. K. Dey, “Lean and zoom: Proximity-aware user in-
terface and content magnification,” in Proc. CHI’08, 2008, pp. 507-510.
T. B. Moeslund and E. Granum, “A survey of computer vision-based
human motion capture,” Comput. Vis. Image Understand., vol. 81, pp.
231-268, Mar. 2001.

K. Tollmar, D. Demirdjian, and T. Darrell, “Navigating in virtual
environments using a vision-based interface,” in Proc. Nordic Conf.
Human-Computer Interaction (NordiCHI’04), 2004, pp. 113-120.
M.-Y. Chen, L. Mummert, P. Pillai, A. Hauptmann, and R. Sukthankar,
“Controlling your tv with gestures,” in Proc. Int. Conf. Multimedia In-
formation Retrieval (MIR’10), 2010, pp. 405-408.

J. P. Wachs, M. Kolsch, H. Stern, and Y. Edan, “Vision-based hand-
gesture applications,” Commun. ACM, vol. 54, pp. 60-71, Feb. 2011.
D. Beymer and M. Flickner, “Eye gaze tracking using an active stereo
head,” in Proc. IEEE Int. Conf. Computer Vision and Pattern Recogni-
tion (CVPR’03), Jun. 2003, vol. 2, pp. 451-458.

B. Noureddin, P. D. Lawrence, and C. F. Man, “A non-contact device
for tracking gaze in a human computer interface,” Comput. Vis. Image
Understand., vol. 98, pp. 52-82, Apr. 2005.

T. Ohno and N. Mukawa, “A free-head simple calibration, gaze
tracking system that enables gaze-based interaction,” in Proc. Symp.
Eye Tracking Research & Applications (ETRA’04),2004, pp. 115-122.
K. Nguyen, C. Wagner, D. Koons, and M. Flickner, “Differences in
the infrared bright pupil response of human eyes,” in Proc. Symp. Eye
Tracking Research & Applications (ETRA’02), 2002, pp. 133—138.

K. Bernardin, H. K. Ekenel, and R. Stiefelhagen, “Multimodal identity
tracking in a smart room,” Personal Ubiq. Comput., vol. 13, pp. 25-31,
Jan. 2009.

J.-G. Wang and E. Sung, “Gaze determination via images of irises,”
Image Vision Comput., vol. 19, no. 12, pp. 891-911, 2001.

D. Xia and Z. Ruan, “IR image based eye gaze estimation,” in Proc.
ACIS Int. Conf. Software Engineering, Artificial Intelligence, Net-
working, and Parallel/Distributed Computing (SNPD’07), 2007, vol.
1, pp. 220-224.

C. Colombo, D. Comanducci, and A. D. Bimbo, “Robust tracking and
remapping of eye appearance with passive computer vision,” ACM
Trans. Multimedia Comput. Commun. Appl., vol. 3, pp. 2:1-2:20, Dec.
2007.

J. Wang, L. Yin, and J. Moore, “Using geometric properties of topo-
graphic manifold to detect and track eyes for human-computer inter-
action,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 3, pp.
3:1-3:20, Dec. 2007.

D. Schnieders, X. Fu, and K.-Y. Wong, “Reconstruction of display and
eyes from a single image,” in Proc. IEEE Int. Conf. Computer Vision
and Pattern Recognition (CVPR’10), Jun. 2010, pp. 1442-1449.

E. Pogalin, A. Redert, I. Patras, and E. A. Hendriks, “Gaze tracking
by using factorized likelihoods particle filtering and stereo vision,” in
Proc. Int. Symp. 3D Data Processing, Visualization, and Transmission
(3DPVT’06), 2006, pp. 57-64.

J. Xie and X. Lin, “Gaze direction estimation based on natural head
movements,” in Proc. Int. Conf. Image and Graphics (ICIG’07), 2007,
pp. 672-677.

H. Wu, Y. Kitagawa, T. Wada, T. Kato, and Q. Chen, “Tracking iris
contour with a 3D eye-model for gaze estimation,” in Proc. Asian
Conf. Comput. Vision—Volume Part I (ACCV’07), 2007, vol. Part I,
pp. 688—697.

H. Yamazoe, A. Utsumi, T. Yonezawa, and S. Abe, “Remote and
head-motion-free gaze tracking for real environments with automated
head-eye model calibrations,” in Proc. IEEE CVPR Workshop Human
Communicative Behavior Analysis (CVPR4HB), Jun. 2008, pp. 1-6.



[25] V. I Pavlovic, R. Sharma, and T. S. Huang, “Visual interpretation of
hand gestures for human-computer interaction: A review,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 677-695, Jul. 1997.

[26] Y. Wu and T. S. Huang, “Vision-based gesture recognition: A review,”
in Proc. Int. Gesture Workshop Gesture-Based Communication in
Human-Computer Interaction (GW’99), 1999, pp. 103—-115.

[27] R. Y. Wang and J. Popovi¢, “Real-time hand-tracking with a color
glove,” ACM Trans. Graphics, vol. 28, pp. 63:1-63:8, Jul. 2009.

[28] C. Manders, F. Farbiz, J. Chong, K. Tang, G. Chua, M. Loke, and M.
Yuan, “Robust hand tracking using a skin tone and depth joint prob-
ability model,” in Proc. IEEE Int. Conf. Automatic Face & Gesture
Recognition (FG’08), Sep. 2008, pp. 1-6.

[29] A. Utsumi, N. Tetsutani, and S. Igi, “Hand detection and tracking using
pixel value distribution model for multiple-camera-based gesture in-
teractions,” in Proc. IEEE Workshop Knowledge Media Networking
(KMN’02), 2002, pp. 31-36.

[30] M. Lee, D. Weinshall, E. Cohen-Solal, A. Colmenarez, and D. Lyons,
“A computer vision system for on-screen item selection by finger
pointing,” in Proc. IEEE Int. Conf. Computer Vision and Pattern
Recognition (CVPR’01), 2001, vol. 1, pp. 1026-1033.

[31] C. Colombo, A. D. Bimbo, and A. Valli, “Visual capture and under-
standing of hand pointing actions in a 3-D environment,” IEEE Trans.
Syst., Man, Cybern. B, vol. 33, no. 4, pp. 677-686, Aug. 2003.

[32] N. Jojic, B. Brumitt, B. Meyers, S. Harris, and T. Huang, “Detection
and estimation of pointing gestures in real-time stereo sequences,” in
Proc. IEEE Int. Conf. Automatic Face & Gesture Recognition (FG’00),
2000, pp. 468-475.

[33] Y. Yamamoto, I. Yoda, and K. Sakaue, “Arm-pointing gesture interface
using surrounded stereo cameras system,” in Proc. Int. Conf. Pattern
Recognition (ICPR’04), 2004, vol. 4, pp. 965-970.

[34] M. Kolsch and M. Turk, “Analysis of rotational robustness of hand de-
tection with a Viola-Jones detector,” in Proc. Int. Conf. Pattern Recog-
nition (ICPR’04), 2004, vol. 3, pp. 107-110.

[35] T. T. Nguyen, N. D. Binh, and H. Bischof, “An active boosting-based
learning framework for real-time hand detection,” in Proc. IEEE Int.
Conf. Automatic Face & Gesture Recognition (FG’08), Sep. 2008, pp.
1-6.

[36] L. Cinque, M. Cupelli, and E. Sangineto, “Fast viewpoint-invariant
articulated hand detection combining curve and graph matching,” in
Proc. IEEE Int. Conf. Automatic Face & Gesture Recognition (FG’08),
Sep. 2008, pp. 1-6.

[37] M. Kolsch and M. Turk, “Robust hand detection,” in Proc. IEEE Int.
Conf. Automatic Face & Gesture Recognition (FG’04), May 2004, pp.
614-619.

[38] K. Oka, Y. Sato, and H. Koike, “Real-time fingertip tracking and ges-
ture recognition,” IEEE Comput. Graphics Appl., vol. 22, no. 6, pp.
64-71, Nov./Dec. 2002.

[39] C.-B.Park, M.-C. Roh, and S.-W. Lee, “Real-time 3D pointing gesture
recognition in mobile space,” in Proc. IEEE Int. Conf. Automatic Face
& Gesture Recognition (FG’08), Sep. 2008, pp. 1-6.

[40] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J.
Comput. Vis., vol. 57, pp. 137-154, May 2004.

[41] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance
models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6, pp.
681-685, Jun. 2001.

[42] T. Hung, “Real-time face detection and applications,” M.S. thesis,
Binghamton Univ., Binghamton, N, 2008.

[43] Seeing machines faceapi. [Online]. Available: http://www.seeingma-
chines.com/product/faceapi.

[44] D.Li, D. Winfield, and D. Parkhurst, “Starburst: A hybrid algorithm for
video-based eye tracking combining feature-based and model-based
approaches,” in Proc. IEEE CVPR Workshop Vision for Human-Com-
puter Interaction (V4HCI), Jun. 2005, p. 79.

[45] V. Vezhnevets and A. Degtiareva, “Robust and accurate eye contour
extraction,” in Proc. GraphiCon’03, 2003, pp. 81-84.

[46] F. Coutinho and C. Morimoto, “Free head motion eye gaze tracking
using a single camera and multiple light sources,” in Proc. Brazilian
Symp. Computer Graphics and Image Processing (SIBGRAPI'06), Oct.
2006, pp. 171-178.

[47] R.Bailey, A. McNamara, N. Sudarsanam, and C. Grimm, “Subtle gaze
direction,” in Proc. ACM SIGGRAPH 2007 posters, 2007.

[48] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.
New York: Cambridge Univ. Press, 1992.

[49] J. Orozco, F. X. Roca, and J. Gonzalez, “Real-time gaze tracking with
appearance-based models,” Mach. Vision Appl., vol. 7, pp. 1-12, Oct.
2009.

for computer vision.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 3, JUNE 2011

Michael J. Reale (S’10) received the B.S. degree in
computer science from SUNY Oneonta, NY, in 2007
and the M.S. degree from the State University of New
York at Binghamton in 2009. He is now pursuing the
Ph.D. degree.

He works in the Graphics and Image Computing
(GAIC) lab at the State University of New York
at Binghamton. His research interests include eye
tracking and gaze estimation, human—computer
interaction interfaces, expression recognition, and
computer graphics, as well as GPGPU programming

Shaun Canavan (S’07) received the B.S. degree in
computer science and the M.C.L.S. degree in com-
puter information systems from Youngstown State
University, Youngstown, OH, in 2006 and 2008,
respectively. He is currently pursuing the Ph.D.
degree in computer science with the Graphics and
Image Computing (GAIC) lab at the State University
of New York at Binghamton.

His research interests include statistical shape
analysis of 2-D and 3-D shapes, face recognition,
and human—computer interaction.

Lijun Yin (M’00-SM’10) received the M.Sc. degree
in electrical engineering from Shanghai Jiao Tong
University, Shanghai, China, in 1992 and the Ph.D.
degree in computer science from the University of
Alberta, Edmonton, AB, Canada, in 2000.

Before he joined the State University of New York
at Binghamton in 2001, he was with Chyron Corp.,
Long Island, NY, and InfiMed Inc., Syracuse, NY,
as a Computer Graphics and Image Scientist. He is
currently an Associate Professor and the Director of
the Graphics and Image Computing (GAIC) Labo-

ratory in the Computer Science Department, State University of New York at
Binghamton. He was a summer visiting faculty in the Air Force Research Lab
at Rome, NY, in 2005. His research interests include visual information pro-
cessing, computer vision, biometrics, face and gesture analysis, recognition, an-
imation, and applications to human—computer interaction. He has over 90 publi-
cations in referred journals and conferences. His research has been supported by
the National Science Foundation, the New York State Office of Science, Tech-
nology and Academic Research (NYSTAR), Air Force Research Lab, and the
SUNY Upstate Medical Center.

Dr. Yin received the prestigious NYSTAR’s James Watson Young Investi-
gator Award in 2006. He is currently serving as an Editorial Board Member for
the Journal of Image and Vision Computing.

[

.‘)‘
=

Kaoning Hu received the B.S. degree and the M.S.
degree in electronics engineering from Huazhong
University of Science and Technology, Wuhan,
China, in 2006 and 2008, respectively. He is now
pursuing the Ph.D. degree in computer science with
the Graphics and Image Computing (GAIC) lab at
the State University of New York at Binghamton.

His research interests are hand tracking, gesture
recognition, human—computer interaction interfaces,
and computer graphics.

Terry Hung received the B.S. and M.S. degrees in
biomedical engineering from CYCU, Taiwan, and the
M.S. degree in computer science at the State Univer-
sity of New York at Binghamton in 2008.

He worked in the Graphics and Image Computing
(GAIC) Lab at the State University of New York at
Binghamton. His research interests have included
data mining, machine learning, image processing,
face detection, and medical device design. He cre-
ated the product Golf instant Replayer (Golf IR) in
2005, which was marketed by Sun Scientific Corp.

From September 2008 to the present, he has been a Senior Control System
Engineer in Corning Inc., Taichung City, Taiwan.



